Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Uraniferous bitumen nodules in the Talvivaara Ni–Zn–Cu–Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales

  • 688 Accesses

  • 12 Citations

Abstract

In the central part of the Fennoscandian Shield, the Talvivaara Ni–Zn–Cu–Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0–1.9 Ga ago and underwent subsequent metamorphism during the 1.9–1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U–Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878 ± 17 and 1,871 ± 43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

  2. Beyssac O, Lazzeri M (2012) Application of Raman spectroscopy to the study of graphitic carbons in the Earth Sciences. In: Dubessy J, Caumon M-C, Rull F (eds) Applications of Raman spectroscopy to earth sciences and cultural heritage. EMU Notes in Mineralogy, 12. The European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, London, pp 415–454

  3. Beyssac O, Goffé B, Chopin C, Rouzaud J-N (2002) Raman spectra of carbonaceous material in metasediments: a new geothermometer. J Metamorph Geol 20:859–871

  4. Beyssac O, Brunet F, Petitet J-P, Goffé B, Rouzaud J-N (2003a) Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur J Mineral 15:937–951

  5. Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N (2003b) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 59:2267–2276

  6. Bonal L, Quirico E, Bourot-Denise M, Montagnac G (2006) Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim Cosmochim Acta 70:1849–1863

  7. Bonhoure J, Kister P, Cuney M, Deloule E (2007) Methodology for rare earth element determinations of uranium oxides by ion microprobe. Geostand Geoanal Res 31:209–225

  8. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

  9. Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47

  10. Chaillou G, Anschutz P, Lavaux G, Schäfer J, Blanc G (2002) The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay. Mar Chem 80:41–59

  11. Crusius J, Calvert S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78

  12. Cuney M (2010) Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Econ Geol 105:553–569

  13. Deditius AP, Utsunomiya S, Ewing RC (2008) The chemical stability of coffinite, USiO4·nH2O; 0 < n < 2, associated with organic matter: a case study from Grants uranium region, New Mexico, USA. Chem Geol 251:33–49

  14. Eakin PA, Gize AP (1992) Reflected-light microscopy of uraniferous bitumens. Mineral Mag 56:85–99

  15. Eilu P, Ahtola T, Äikäs O, Halkoaho T, Heikura P, Hulkki H, Iljina M, Juopperi H, Karinen T, Kärkkäinen N, Konnunaho A, Kontinen A, Kontoniemi O, Korkiakoski E, Korsakova M, Kuivasaari T, Kyläkoski M, Makkonen H, Niiranen T, Nikander J, Nykänen V, Perdahl J-A, Pohjolainen E, Räsänen J, Sorjonen-Ward P, Tiainen M, Tontti M, Torppa A, Västi K (2012) Metallogenic areas in Finland. In: Eilu P (ed) Mineral deposits and metallogeny of Fennoscandia. Geological Survey of Finland, Special Paper vol 53. pp 207–342

  16. Fisher QJ, Wignall PB (2001) Palaeoenvironmental controls on the uranium distribution in an Upper Carboniferous black shale (Gastrioceras listeri Marine Band) and associated strata, England. Chem Geol 175:605–621

  17. Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

  18. Hladikova J, Kribek B (1997) Graphitization of organic matter isotope composition of organic carbon and sulphide sulphur from the Melalahti black schist and some other localities from Finland. Czech Geological Survey, Prague

  19. Holland HD (1979) Metals in black shales: a reassessment. Econ Geol 74:1676–1680

  20. Jehlicka J, Urban O, Pokorny J (2003) Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochim Acta A Mol Biomol Spectrosc 59:2341–2352

  21. Kärki A, Laajoki K (1995) An interlinked system of folds and ductile shear zones-late stage Svecokarelian deformation in the central Fennoscandian Shield, Finland. J Struct Geol 17:1233–1247

  22. Kish L, Cuney M (1981) Uraninite-albite veins from the Mistamisk Valley of the Labrador Trough, Quebec. Mineral Mag 44:471–483

  23. Klinkhammer GP, Palmer MR (1991) Uranium in the oceans: where it goes and why. Geochim Cosmochim Acta 55:1799–1806

  24. Koistinen TJ (1981) Structural evolution of an early Proterozoic strata-bound Cu-Co-Zn deposit, Outokumpu, Finland. Trans Roy Soc Edinb Earth Sci 72:115–158

  25. Korja A, Heikkinen P (2005) The accretionary Svecofennian orogen—insight from the BABEL profiles. Precambrian Res 136:241–268

  26. Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. Geol Soc London Mem 32:561–578

  27. Lach P, Mercadier J, Dubessy J, Boiron M-C, Cuney M (2013) In situ quantitative measurement of rare earth elements in uranium oxides by laser ablation-inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 37:277–296

  28. Lahfid A, Beyssac O, Deville E, Negro F, Chopin C, Goffé B (2010) Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova 22:354–360

  29. Lahtinen R (1994) Crustal evolution of the Svecofennian and Karelian domains during 2.1-1.79 Ga, with special emphasis on the geochemistry and origin of 1.93-1.91 Ga gneissic tonalites and associated supractustal rocks in the Rautalampi area, central Finland. Geological Survey of Finland, Bulletin 378

  30. Lahtinen R, Korja A, Nironen M (2005) Palaeoproterozoic tectonic evolution of the Fennoscandian Shield. In: Lehtinen M, Nurmi P, Rämö T (eds) The Precambrian bedrock of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp. 418–532

  31. Lahtinen R, Garde AA, Melezhik VA (2008) Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31:20–28

  32. Landais P, Dubessy J, Dereppe J-M, Philp RP (1993) Characterization of graphite alteration and bitumen genesis in the Cigar Lake deposit (Saskatchewan, Canada). Can J Earth Sci 30:743–753

  33. Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

  34. Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source—rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358

  35. Lecomte A, Cathelineau M, Michels R, Brouand M (2013) Uranium mineralization in the Alum Shale Formation (Sweden). In: Jonsson E et al. (Eds) Mineral deposit research for a high-tech world, Proceedings of the 12th Biennial SGA Meeting, 12–15 August 2013, Uppsala, Sweden, pp 1654-1656

  36. Leisen M (2011) Analyse chimique des inclusions fluides par ablation-laser couplée à l'ICP-MS et applications géochimiques, PhD Thesis, Nancy-Université

  37. Lewan MD (1978) Laboratory classification of very fine grained sedimentary rocks. Geology 6:745–748

  38. Loukola-Ruskeeniemi K (1995) Origin of the black-shale-hosted Ni-Cu-Zn deposit at Talvivaara. Geological Survey of Finland, Special Paper 20, pp 31–46

  39. Loukola-Ruskeeniemi K (1999) Origin of black shales and the serpentinite-associated Cu-Zn-Co ores at Outokumpu, Finland. Econ Geol 94:1007–1028

  40. Loukola-Ruskeeniemi K, Heino T (1996) Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Econ Geol 91:80–110

  41. Loukola-Ruskeeniemi K, Lahtinen H (2013) Multiphase evolution in the black shale-hosted Ni-Cu-Zn-Co deposit at Talvivaara, Finland. Ore Geol Rev 52:85–99

  42. Loukola-Ruskeeniemi K, Heino T, Talvitie J, Vanne J (1991) Base-metal-rich metamorphosed black shales associated with Proterozoic ophiolites in the Kainuu schist belt, Finland: a genetic link with the Outokumpu rock assemblage. Miner Deposita 26:143–151

  43. Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

  44. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

  45. Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol 113:41–53

  46. McCready AJ, Stumpfl EF, Melcher F (2003) U/Th-rich bitumen in Archean granites and Palaeoproterozoic metasediments, Rum Jungle Mineral Field, Australia: implications for mineralizing fluids. Geofluids 3:147–159

  47. McManus J, Berelson WM, Klinkhammer GP, Hammond DE, Holm C (2005) Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim Cosmochim Acta 69:95–108

  48. Mercadier J, Cuney M, Lach P, Boiron MC, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23:264–269

  49. Mertanen S, Pesonen LJ, Huhma H, Leino MAH (1989) Palaeomagnetism of the early proterozoic layered intrusions, northern Finland Geological Survey of Finland, Bulletin 347. pp 40

  50. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

  51. Morford JL, Russell AD, Emerson S (2001) Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Mar Geol 174:355–369

  52. Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20:392–401

  53. Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precambrian Res 86:21–44

  54. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

  55. Peltonen P, Kontinen A, Huhma H (1996) Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua Ophiolite, Northeastern Finland. J Petrol 37:1359–1383

  56. Pufahl PK, Hiatt EE (2012) Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Mar Pet Geol 32:1–20

  57. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742

  58. Schuhmacher M, Fernandes F, de Chambost E (2004) Achieving high reproducibility isotope ratios with the Cameca IMS 1270 in the multicollection mode. Appl Surf Sci 231:878–882

  59. Sorjonen-Ward P (1997) An overview of the geological and tectonic evolution of eastern Finland. In: Ruskeeniemi K, Sorjonen-Ward P (eds) Ore deposits in eastern Finland (4th biennial SGA Meeting, August 11–13, 1997, Turku, Finland, Excursion Guidebook A4). Geological Survey of Finland

  60. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

  61. Tourtelot HA (1979) Black shale—its deposition and diagenesis. Clays Clay Miner 27:313–321

  62. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

  63. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

  64. Vine JD, Tourtelot EB (1970) Geochemistry of black shale deposits; a summary report. Econ Geol 65:253–272

  65. Ward P (1987) Early Proterozoic deposition and deformation at the Karelian craton margin in southeastern Finland. Precambrian Res 35:71–93

  66. Wignall PB (1994) Black shales. Oxford University Press, Oxford

  67. Young SA, Loukola-Ruskeeniemi K, Pratt LM (2013) Reactions of hydrothermal solutions with organic matter in Paleoproterozoic black shales at Talvivaara, Finland: Evidence from multiple sulfur isotopes. Earth Planet Sci Lett 367:1–14

Download references

Acknowledgments

The authors would like to thank Talvivaara Mining Company for welcoming us on the field, providing us the samples used in this study, and for technical and scientific assistance. We acknowledge two anonymous reviewers for their useful comments and suggestions and G. Beaudoin for his help in the final edition of the manuscript. This work was supported by Institut Carnot Énergie et Environnement en Lorraine, Labex Ressources 21 (ANR-10-LABX-21-02), and AREVA.

Author information

Correspondence to Andreï Lecomte.

Additional information

Editorial handling: R.L. Romer

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lecomte, A., Cathelineau, M., Deloule, E. et al. Uraniferous bitumen nodules in the Talvivaara Ni–Zn–Cu–Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales. Miner Deposita 49, 513–533 (2014). https://doi.org/10.1007/s00126-013-0502-3

Download citation

Keywords

  • Talvivaara
  • Black shale
  • Uranium
  • Bitumen nodules
  • Metamorphism