Mineralium Deposita

, Volume 49, Issue 3, pp 353–369 | Cite as

Genetic relationship between silver–lead–zinc mineralization in the Wutong deposit, Guangxi Province and Mesozoic granitic magmatism in the Nanling belt, southeast China

  • Pilar Lecumberri-Sanchez
  • Rolf L. Romer
  • Volker Lüders
  • Robert J. Bodnar


More than 50 % of the world's total reserves of tungsten are in China and most tungsten deposits are located in the Nanling range in southeast China. This study explores the potential genetic relationship between tungsten–tin (W–Sn) mineralization and shallower Ag–Pb–Zn deposits in the Nanling range based on data from the Wutong deposit, Guangxi Province. The lead, oxygen, carbon, sulfur, and strontium isotopic compositions of minerals at Wutong indicate that a single crustal-derived fluid was responsible for mineralization. Wutong likely formed at relatively low temperatures (∼200–300 °C) and low pressures, as indicated by the similarity between homogenization temperatures of fluid inclusions and those estimated from S isotopic compositions of minerals. The hübnerite age (92.3–104.4 Ma) indicates that the Wutong mineralization is likely related to nearby Late Yanshanian (Cretaceous) S-type granites derived from Proterozoic crust. This mineralization event coincides with the last W–Sn mineralization event and the Cretaceous peak of mineralization in the Nanling range.


Cathaysia Yanshanian Hübnerite dating Chalcopyrite disease Fluid inclusions Isotopes 



We would like to thank Bryan Lees (Collector's Edge Inc., Golden, CO, USA) for providing the samples used in this study, Mark Caddick for valuable discussions on diffusion rates and mechanisms, Jamie Wilkinson and Martin Appold for providing additional LA-ICP-MS processing software and for their input on LA-ICP-MS data processing and expertise on fluid inclusions in sphalerite, and Matthew Steele-MacInnis for his readiness to discuss geology in general and fluid phase equilibrium in particular. Birgit Plessen (GFZ Potsdam) and Harald Strauß (University Münster) are thanked for stable isotope analysis of rhodochrosite and sulfide samples. We are also indebted to Dean Misantoni for information about the local geology in the Wutong area and to Prof. Chen Maohong and Mr. Zheng Wei for providing access to regional maps of the Dayaoshan-Yunkai area. This manuscript benefitted from the reviews, comments, and suggestions from Prof. Jingwen Mao and Prof. Bernd Lehmann. This paper is based upon work supported by the US National Science Foundation under grant no. EAR-1019770 to RJB.


  1. Barton PB Jr, Bethke PM (1987) Chalcopyrite disease in sphalerite; pathology and epidemiology. Am Mineral 72:451–467Google Scholar
  2. Bente K, Doering T (1993) Solid-state diffusion in sphalerites—an experimental verification of the chalcopyrite disease. Eur J Mineral 5:465–478Google Scholar
  3. Bente K, Doering T (1995) Experimental studies on the solid-state diffusion of Cu + In in ZnS and on disease, DIS (diffusion-induced segregations), in sphalerite and their geological applications. Miner Petrol 53:285–305. doi: 10.1007/bf01160153 CrossRefGoogle Scholar
  4. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57:683–684. doi: 10.1016/0016-7037(93)90378-A CrossRefGoogle Scholar
  5. Böttcher ME (1993) Die experimentelle Untersuchung Lagerstätten-relevanter Metall-Anreicherungen aus wäßrigen Lösungen unter besonderer Berücksichtigung von Rhodochrosit (MnCO3). Dissertation, University of Göttingen, pp 237Google Scholar
  6. Charoy B, Barbey P (2008) Ferromagnesian silicate association in S-type granites; the Darongshan granitic complex (Guangxi, south China). B Soc Geol Fr 179:13–27. doi: 10.2113/gssgfbull.179.1.13 CrossRefGoogle Scholar
  7. Chen J, Jahn B (1998) Crustal evolution of southeastern China; Nd and Sr isotopic evidence. Tectonophysics 284:101–133CrossRefGoogle Scholar
  8. Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J Geophys Res 96:8113–8126CrossRefGoogle Scholar
  9. Eldridge CS, Bourcier WL, Ohmoto H, Barnes HL (1988) Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Econ Geol 83:978–989CrossRefGoogle Scholar
  10. Fall A, Tattitch B, Bodnar RJ (2011) Combined microthermometric and Raman spectroscopic technique to determine the salinity of H2O-CO2-NaCl fluid inclusions based on clathrate melting. Geochim Cosmochim Acta 75:951–964CrossRefGoogle Scholar
  11. Feng J, Mao J, Pei R (2013) Ages and geochemistry of Laojunshan granites in southeastern Yunnan, China: implications for W-Sn polymetallic ore deposits. Miner Petrol 107:573–589. doi: 10.1007/s00710-012-0253-3
  12. Geng H, Xu X, O'Reilly SY, Zhao M, Sun T (2006) Cretaceous volcanic-intrusive magmatism in western Guangdong and its geological significance. Sci China: Ser D 49:696–713CrossRefGoogle Scholar
  13. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course Notes 31:199–199Google Scholar
  14. Halter WE, Pettke T, Heinrich CA, Rothen-Rutishauser B (2002) Major to trace element analysis of melt inclusions by laser-ablation ICP-MS; methods of quantification. Chem Geol 183:63–86. doi: 10.1016/S0009-2541(01)00372-2 CrossRefGoogle Scholar
  15. Hoefs J (1987) Stable isotope geochemistry. Springer, BerlinCrossRefGoogle Scholar
  16. Hutchison MN, Scott SD (1981) Sphalerite geobarometry in the Cu-Fe-Zn-S system. Econ Geol 76:143–153CrossRefGoogle Scholar
  17. Jiang Y-H, Jiang S-Y, Zhao K-D, Ling H-F (2006) Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, southeast China; implications for a back-arc extension setting. Geol Mag 143:457–474CrossRefGoogle Scholar
  18. Kawakami Y, Yamamoto J, Kagi H (2003) Micro-Raman densimeter for CO2 inclusions in mantle-derived minerals. Appl Spectrosc 57:1333–1339CrossRefGoogle Scholar
  19. Kojima S (1992) The nature of chalcopyrite inclusions in sphalerite: exsolution, coprecipitation, or "diseased"? A discussion. Econ Geol 87:1191–1192CrossRefGoogle Scholar
  20. Lees B, Behling S, Misantoni D, Lueders V, Romer RL, Sanchez PL, Cory P (2011) The Wutong Mine; Guangxi Zhuang Autonomous Region, China. Mineral Rec 42:521–544Google Scholar
  21. Li Z-X, Li X, Chung S-L, Lo C-H, Xu X, Li W (2012) Magmatic switch-on and switch-off along the south China continental margin since the Permian; transition from an Andean-type to a western Pacific-type plate boundary. Tectonophysics 532–535:271–290CrossRefGoogle Scholar
  22. Lüders V, Romer RL, Gilg H, Bodnar RJ, Pettke T, Misantoni D (2009) A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola. Miner Deposita 44:415–434. doi: 10.1007/s00126-008-0221-3 CrossRefGoogle Scholar
  23. Mao J, Guy B, Raimbault L, Shimazaki H (1996a) Manganese skarn in the Shizhuyuan polymetallic tungsten deposit, Hunan, China. Resour Geol 46:1–11Google Scholar
  24. Mao J, Li H, Shimazaki H, Raimbault L, Guy B (1996b) Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan province, China. Int Geol Rev 38:1020–1039CrossRefGoogle Scholar
  25. Mao J, Xie G, Li X, Zhang C, Wang Y (2006) Mesozoic large-scale mineralization and multiple lithospheric extensions in South China. Acta Geol Sin 80:420–431Google Scholar
  26. Mao J, Cheng Y, Cheng M, Pirajno F (2013) Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner Deposita 48:267–294CrossRefGoogle Scholar
  27. Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zhang WS (2007) Large-scale tungsten–tin mineralization in the Nanling region, South China: metallogenic ages and corresponding geodynamic processes. Acta Petrol Sin 23:2329–2338Google Scholar
  28. Marcoux E, Moelo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Miner Deposita 31:1–26CrossRefGoogle Scholar
  29. Min MZ, Luo X-Z, Li X-G, Yang Z, Zhai L-Y (2003) Geochemical constraints on the petrogenesis of the Middle Miaoershan granitoids, South China. Geochem J 37(5):603–625CrossRefGoogle Scholar
  30. Mizuta T, Scott SD (1997) Kinetics of iron depletion near pyrrhotite and chalcopyrite inclusions in sphalerite: the sphalerite speedometer. Econ Geol 92:772–783CrossRefGoogle Scholar
  31. Mutchler SR, Fedele L, Bodnar RJ (2008) Appendix A5; analysis management system (AMS) for reduction of laser ablation ICP-MS data. Short Course Ser Mineral Assoc Can 40:318–327Google Scholar
  32. Nelkowski H, Bollman G (1969) Diffusion of indium and copper in zinc sulfide single crystals. Z Naturforsch A24:1302–1306Google Scholar
  33. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp pp 509–pp 567Google Scholar
  34. Qi H-W, Hu R-Z, Wang X-F, Qu W-J, Bi X-W, Peng T (2012) Molybdenite Re-Os and muscovite 40 Ar/39Ar dating fo quartz vein-type W-Sn polymetallic deposits in Northern Guangdong, South China. Miner Deposita 47:607–622CrossRefGoogle Scholar
  35. Roedder E (1984) Fluid inclusions. Rev Mineral 12:644Google Scholar
  36. Romer RL (2001) Lead incorporation during crystal growth and the misinterpretation of geochronological data from low- 238U/204Pb metamorphic minerals. Terra Nova 13:258–263. doi: 10.1046/j.1365-3121.2001.00348.x CrossRefGoogle Scholar
  37. Romer RL, Heinrich W, Schroeder-Smeibidl B, Meixner A, Fischer C-O, Schultz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE Mexico; evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petr 149:400–429. doi: 10.1007/s00410-005-0656-9 CrossRefGoogle Scholar
  38. Romer RL, Lüders V (2006) Direct dating of hydrothermal W mineralization; U/Pb age for huebnerite (MnWO4), Sweet Home Mine, Colorado. Geochim Cosmochim Acta 70:4725–4733. doi: 10.1016/j.gca.2006.07.003 CrossRefGoogle Scholar
  39. Romer RL, Roetzler J (2011) The role of element distribution for the isotopic dating of metamorphic minerals. Eur J Mineral 23:17–33CrossRefGoogle Scholar
  40. Schmid R, Romer RL, Franz L, Oberhänsli R, Martinotti G (2003) Basement-cover sequences within the UHP unit of the Dabie Shan. J Metamorph Geol 21:531–538Google Scholar
  41. Seedorff E, Einaudi MT (2004) Henderson porphyry molyvdenum system, Colorado: I. Sequence and abundance of hydrothermal mineral assemblages, flow paths of evolving fluids, and evolutionary style. Econ Geol 99:3–37Google Scholar
  42. Sinclair WD, Kooiman GJA, Martin DA, Kjarsgaard IM (2006) Geology, geochemistry and mineralogy of indium resources at Mount Pleasant, New Brunswick, Canada. Ore Geol Rev 28:123–145. doi: 10.1016/j.oregeorev.2003.03.001 CrossRefGoogle Scholar
  43. Steele-MacInnis M, Lecumberri-Sanchez P, Bodnar RJ (2012) HokieFlincs_H2O-NaCl: a Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl. Comput Geosci 49:334–337CrossRefGoogle Scholar
  44. Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural quartz; 1, Compositional types synthesized and applications to experimental geochemistry. Geochim Cosmochim Acta 48:2659–2668CrossRefGoogle Scholar
  45. Sun W-D, Yang X-Y, Fan W-M, Wu F-Y (2012) Mesozoic large scale magmatism and mineralization in South China: preface. Lithos 150:1–5CrossRefGoogle Scholar
  46. von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734Google Scholar
  47. Wang F, Ling M, Ding X, Hu Y, Zhou J, Yang X, Liang H, Fan W, Sun W (2011) Mesozoic large magmatic events and mineralization in SE China; oblique subduction of the Pacific Plate. Int Geol Rev 53:704–726. doi: 10.1080/00206814.2010.503736 CrossRefGoogle Scholar
  48. Wang Y, Fan B (1987) In: Guo W (ed) Metallogenic map of endogenic ore deposits of China 1:4000000. Cartographic, BeijingGoogle Scholar
  49. Wu CY, Bai G, Xu LM (1993) Types and distribution of silver ore deposits in China. Miner Deposita 28:223–238CrossRefGoogle Scholar
  50. Wu G, Zhang Y (1986) The geochronology of Guangning granitic complex. Guangdong Geol 1:1–22Google Scholar
  51. Zartman RE, Doe BR (1981) Plumbotectonics—the model. Tectonophysics 75:135–162CrossRefGoogle Scholar
  52. Zhang Q, Liu J-J, Shao S-X, Liu ZH (2002) An estimate of the lead isotopic compositions of upper mantle and upper crust and implications for the source of lead in the Jinding Pb-Zn deposit in Western Yunnan, China. Geochem J 36:271–287CrossRefGoogle Scholar
  53. Zhong L, Liu L, Xia B, Li J, Lin X, Xu L, Lin L (2010) Re-Os geochronology of molybdenite from the Yuanzhuding porphyry Cu-Mo deposit in south China. Resour Geol (Tokyo 1998) 60:389–396. doi: 10.1111/j.1751-3928.2010.00143.x CrossRefGoogle Scholar
  54. Zhou X, Sun T, Shen W, Shu L, Niu Y (2006) Petrogenesis of Mesozoic granitoids and volcanic rocks in south China; a response to tectonic evolution. Episodes 29:26–33Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pilar Lecumberri-Sanchez
    • 1
    • 3
  • Rolf L. Romer
    • 2
  • Volker Lüders
    • 2
  • Robert J. Bodnar
    • 1
  1. 1.Department of GeosciencesVirginia TechBlacksburgUSA
  2. 2.Helmholtz Centre PotsdamDeutsches GeoForschungsZentrum (GFZ)PotsdamGermany
  3. 3.Department of Earth SciencesETH ZurichZürichSwitzerland

Personalised recommendations