Mineralium Deposita

, Volume 48, Issue 7, pp 817–824 | Cite as

Log-uniform distribution of gold deposits along major Archean fault zones

  • Olivier Rabeau
  • Jean-Jacques Royer
  • Michel Jébrak
  • Alain Cheilletz


The location of potentially unrecognized gold deposits in the close vicinity of the Cadillac–Larder Lake Fault Zone in the Archean Abitibi Subprovince (Canada) is predicted by applying a stochastic approach to the distribution of known gold deposits. The methodology uses the distances between neighboring orogenic gold deposits along the fault trace. The cumulative distribution of the curvilinear inter-distances along the fault zone, are adequately represented by a log-uniform model. The average inter-distance is 1.95 km, and an upper inter-distance of 5.6 km is observed. The same distribution pattern appears along the Destor–Porcupine Fault Zone (Abitibi). This log-uniform distribution shows that the spatial distribution of gold deposits is regionally controlled by the major crustal shear zone. Lithologies and structures only seem to exert a local influence at the deposit scale. The log-uniform spacing could be interpreted as the result of the crustal failure locations induced by hydraulic overpressure along mechanically independent segments on the main fault.


Orogenic gold Log-uniform spatial distribution Abitibi Archean 



This study was supported by the Université du Québec en Abitibi-Témiscamingue Foundation, URSTM and the DIVEX research network. This work is part of a PhD program between the Université du Québec à Montréal and the École Nationale Supérieure de Géologie, Université de Lorraine, France. The authors are grateful to the Gocad Consortium for providing software support for this research and to NSERC. The authors would like to thank G. Beaudoin and B. Lehmann and two anonymous reviewers whose comments and suggestions have greatly improved the quality of the final version of this paper. Finally, we would like to thank James Moorhead and Venetia Bodycomb for reading an early version of the manuscript.


  1. Beaudoin G, Therrien R, Savard C (2006) 3D numerical modelling of fluid flow in the Val-d’Or orogenic gold district: major crustal shear zones drain fluids from overpressured vein fields. Miner Depos 41:82–98CrossRefGoogle Scholar
  2. Beaulieu C, Jébrak M, Williams-Jones A, Clark J, Wares R (2009) Canadian Malartic gold mineralization: structure and 3D modeling. Québec Exploration, MNRF, DV 2009–06, p. 18Google Scholar
  3. Bierlein FP, Murphy FC, Weinberg RF, Lees T (2006) Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia. Miner Depos 41:107–126CrossRefGoogle Scholar
  4. Bigot L, Jébrak M (2012) Gold mineralization in the Beatie syenite at Duparquet, Quebec Canada. SEG student chapter minerals colloquium, March 5, TorontoGoogle Scholar
  5. Blenkinsop TG, Sanderson DJ (1999) Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe Craton. Geol Soc Lond Spec Publ 155:141–151CrossRefGoogle Scholar
  6. Carlson CA (1991) Spatial distribution of ore deposits. Geology 19:111–114CrossRefGoogle Scholar
  7. Cox SF, Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. In: Richards JP, Tosdal RM (eds) Structural controls on ore genesis. Reviews in Econ Geol, SEG 14:1–22Google Scholar
  8. Cox SF, Ruming K (2004) The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks? J Struct Geol 26:1109–1125CrossRefGoogle Scholar
  9. Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 10:217–233Google Scholar
  10. Daigneault R, Mueller WU (2004) Abitibi greenstone belt plate tectonics: the diachronous history of arc development, accretion and collision. In: Eriksson P, Altermann W, Nelson D, Mueller WU, Catuneaunu O (eds) The Precambrian Earth: Tempos and events, Development in Precambrian Geology, Elsevier, 12:88–103Google Scholar
  11. Davis DW (2002) U-Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi Subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Res 115:97–117CrossRefGoogle Scholar
  12. Faure S (2001) Analyse des linéaments géophysiques en relation avec les minéralisations en or et métaux de base de l’Abitibi. Rapport, Projet CONSOREM 2000, 03A, 26 p.
  13. Fryer BJ, Kerrich R, Hutchinson RW, Peirce MG, Rogers DS (1979) Archean precious-metal hydrothermal systems, Dome Mine, Abitibi Greenstone Belt. I. Patterns of alteration and metal distribution. Can J Earth Sci 16:421–439CrossRefGoogle Scholar
  14. Goldfarb RJ, Baker T, Dubé B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ Geol, 100th Anniversary Vol., 407–450Google Scholar
  15. Goutier J (1997) Géologie de la région de Destor. Ministère des Ressources naturelles du Québec, RG-96-13:37 pGoogle Scholar
  16. Goutier J (2003a) Compilation géoscientifique, géologie 1 : 20 000, Duparquet (32D11-200-0102, Ministère des Ressources naturelles du Québec, mapGoogle Scholar
  17. Goutier J (2003b) Compilation géoscientifique, géologie 1 : 20 000, Roquemaure (32D11-200-0101, Ministère des Ressources naturelles du Québec, mapGoogle Scholar
  18. Goutier J, Melançon M (2010) Compilation géologique de la Sous-Province de l'Abitibi (version préliminaire). Publication du M.E.R., RP-2010-04, 2 pGoogle Scholar
  19. Graham RB (1954) Parties des cantons d’Hébécourt, de Duparquet et de Destor, comté d’Abitibi-Ouest, Dép des Mines, RG 061, 87 pGoogle Scholar
  20. Groves DI (1993) The crustal continuum model for late-Archean lode-gold deposits of the Yilgarn block, Western Australia. Miner Deposita 28:366–374CrossRefGoogle Scholar
  21. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hageman SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of the crustal distribution and relationship to other deposit types. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  22. Groves DI, Goldfarb RJ, Knox-Robinson CM, Ojala J, Gardoll S, Yun GY, Holyland P (2000) Late-kinematic timing of orogenic gold deposits and significance for computer-based exploration techniques with emphasis on the Yilgarn Block, Western Australia. Ore Geol Rev 17:1–38CrossRefGoogle Scholar
  23. Harcouet-Menou V, Guillou-Frottier L, Bonneville A, Adler P, Mourzenko V (2009) Hydrothermal convection in and around mineralized fault zones: insights from two- and three-dimensional numerical modeling applied to the Ashanti belt, Ghana. Geofluids 9:116–137CrossRefGoogle Scholar
  24. Hubert C, Trudel P, Gélinas L (1984) Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Can J Earth Sci 21:1024–1032CrossRefGoogle Scholar
  25. Kerrich R (1989) Source processes for Archean Au–Ag vein deposits: evidence from lithophile-element systematics of the Hollinger–McIntyre and Buffalo Ankerite deposits, Timmins. Can J Earth Sci 26:755–781CrossRefGoogle Scholar
  26. Kishida A, Kerrich R (1987) Hydrothermal alteration zoning and gold concentration at the Kerr–Addison Archean lode gold deposit, Kirkland Lake, Ontario. Econ Geol 82:649–690CrossRefGoogle Scholar
  27. Legault M, Goutier J, Beaudoin G, Aucoin M (2005) Synthèse métallogénique de la Faille Porcupine–Destor, Sous-Province de l’Abitibi, Ministère des Ressources naturelles et de la Faune, ET 2005–01:35 pGoogle Scholar
  28. Mihalasky MJ (2006) Controls over the regional-scale distribution of sedimentary and volcanic rock-hosted Au-Ag mineral sites in Nevada: a GIS-based weights-of-evidence analysis. In: Harris JR (ed) GIS for the Earth Sciences. Geol Ass Can Sp Pub 44:53–98Google Scholar
  29. Micklethwaite S, Cox SF (2004) Fault-segment rupture, aftershock-zone fluid flow, and mineralization. Geology 32:813–816CrossRefGoogle Scholar
  30. Micklethwaite S, Sheldon HA, Baker T (2010) Active fault and shear processes and their implications for mineral deposit formation and discovery. J Struct Geol 32:151–165CrossRefGoogle Scholar
  31. Poulsen HK, Robert F, Dubé B (2000) Geological classification of Canadian gold deposits. Geological Survey of Canada, 106 pGoogle Scholar
  32. Rabeau O, Legault M, Cheilletz A, Jébrak M, Royer JJ, Cheng LZ (2011) Gold potential of a hidden Archean fault zone: the case of the Cadillac–Larder Lake Fault. Explor Min Geol 19:99–116CrossRefGoogle Scholar
  33. Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models, In: Hagemann, SG, Brown, PE (eds) Gold in 2000. SEG, Reviews in Econ Geol 13:141–162Google Scholar
  34. Robert F, Poulsen H (1997) World-class Archean gold deposits in Canada: an overview. Aust J Earth Sci 44:329–351CrossRefGoogle Scholar
  35. Robert F, Poulsen H, Cassidy KF, Hodgson, CJ. (2005) Gold metallogeny of the Yilgarn and Superior cratons. Economic Geology One Hundred Anniv vol, SEG 1001–1034Google Scholar
  36. Rogge DM, Halden NM, Beaumont-Smith C (2006) Application of data integration for shear-hosted Au potential modeling: Lynn Lake greenstone belt north-eastern Manitoba, Canada, In: Harris JR (ed) GIS for the Earth Sciences. Geol Ass Can Spec Pub 44: pp 191–210Google Scholar
  37. Sibson RH, Scott J (1998) Stress/fault controls on the containment and release of over-pressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand. Ore Geol Rev 13:293–306CrossRefGoogle Scholar
  38. Weinberg RF, Hodkiewicz PF, Groves DI (2004) What controls gold distribution in Archean terranes? Geology 32:545–548CrossRefGoogle Scholar
  39. Zoback S, Hickman S, Ellsworth W (2010) Scientific drilling into the San Andrea fault zone. Eos Trans Am Geophys Union 91:197–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Rabeau
    • 1
  • Jean-Jacques Royer
    • 2
  • Michel Jébrak
    • 3
  • Alain Cheilletz
    • 2
  1. 1.URSTM, Université du Québec en Abitibi-Témiscamingue, Ministère des ressources naturelles-QuébecVal-d’OrCanada
  2. 2.École Nationale Supérieure de Géologie, ENSG, Laboratoire Géoressources UMR-CNRS 7359Université de LorraineVandœuvre-lès-Nancy CedexFrance
  3. 3.Département des Sciences de la Terre et de l’atmosphèreUQAM, Université du Québec à MontréalMontrealCanada

Personalised recommendations