Mineralium Deposita

, Volume 48, Issue 7, pp 883–905 | Cite as

Multistage gold mineralization at the Lapa mine, Abitibi Subprovince: insights into auriferous hydrothermal and metasomatic processes in the Cadillac–Larder Lake Fault Zone

  • M. SimardEmail author
  • D. Gaboury
  • R. Daigneault
  • P. Mercier-Langevin


The Lapa gold deposit contains reserves of 2.4 Mt at 6.5 g/t Au and is one of the few deposits located directly within the Cadillac–Larder Lake Fault Zone (CLLFZ), a first-order crustal-scale fault that separates the Archean Abitibi Subprovince from the Pontiac Subprovince to the south. Gold mineralization is predominantly hosted in highly strained and altered, upper greenschist–lower amphibolite facies mafic to ultramafic rocks of the Piché Group. Auriferous ore zones consist of finely disseminated auriferous arsenopyrite–pyrrhotite ± pyrite and native gold disseminated in biotite- and carbonate-altered wall rocks. Native gold, which is also present in quartz ± dolomite–calcite veinlets, is locally associated with Sb-bearing minerals, especially at depth ≤1 km from surface where the deposit is characterized by a Au–Sb–As association. At vertical depth greater than 1 km, gold is associated with arsenopyrite and pyrrhotite (Au–As association). The mineralogy and paragenesis of the Lapa deposit metamorphosed ore and alteration assemblages record the superposition of three metamorphic episodes (M1, M2, and M3) and three gold mineralizing events. Spatial association between biotitized wall rocks and auriferous arsenopyrite indicates that arsenopyrite precipitation is concomitant with potassic alteration. The predominant Au–As association recognized across the deposit is related to gold in solid solution in arsenopyrite as part of a pre-M2 low-grade auriferous hydrothermal event. However, the occurrence of hornblende + oligoclase porphyroblasts overprinting the biotite alteration, and the presence of porous clusters and porphyroblasts of arsenopyrite with native gold and pyrrhotite indicate an auriferous metasomatic event associated with peak M2 prograde metamorphism. Late retrograde metamorphism (M3) overprints the hornblende–oligoclase M2 assemblage within the host rocks proximal to ore by an actinolite–albite assemblage by precipitation of free gold and Sb–sulfosalts at lower PT. The complex relationships between ore, structural features, and metamorphic assemblages at Lapa are related to the tectonometamorphic evolution of the Cadillac–Larder Lake Fault Zone at different times and crustal levels, and varying heat and fluid flow regimes. The Lapa deposit demonstrates that early, low-grade gold mineralization within the Cadillac–Larder Lake Fault Zone has benefited from late gold enrichment(s) during prograde and retrograde metamorphism, suggesting that multi-stage processes may be important to form gold-rich orogenic deposits in first order crustal-scale structures.


Abitibi greenstone belt Vertical zoning Arsenopyrite Invisible gold Metasomatism Cadillac–Larder Lake Fault Zone 



The authors wish to express their sincere appreciation to Agnico-Eagle Mines Ltd. and the Lapa mine geology department staff for financial and logistical support and for the authorization to publish. We are especially grateful to Jocelyn Coté, Normand Bédard, and Guy Gosselin for their invaluable assistance and helpful discussions about the deposit. We acknowledge the Natural Sciences and Engineering Research Council of Canada for scholarships to M. Simard and a Discovery grant. An earlier version of the manuscript was substantially improved by comments and suggestions from an anonymous reviewer, S.G. Hagemann and G. Beaudoin.

Supplementary material

126_2013_466_MOESM1_ESM.doc (701 kb)
ESM 1 Map of Level 80 (800 m depth) in a plane view and b cross-section. Local asymmetric folds along the Cadillac–Piché contact is shown in (a). (DOC 701 kb)
126_2013_466_MOESM2_ESM.doc (313 kb)
ESM 2 Binary plots showing variations of metallic content vs. depth. a Antimony. b Gold. c Arsenic. Depth represents depth of the Lapa mine grid. (DOC 313 kb)
126_2013_466_MOESM3_ESM.doc (67 kb)
ESM 3 Representative arsenopyrite composition from microprobe analysis (wt.%). (DOC 67 kb)
126_2013_466_MOESM4_ESM.doc (73 kb)
ESM 4 Representative LA–ICP–MS analysis of arsenopyrite in the Lapa gold deposit (ppm). (DOC 73 kb)
126_2013_466_MOESM5_ESM.doc (87 kb)
ESM 5 Representative amphibole compositions from electron microprobe analysis. (DOC 87 kb)
126_2013_466_MOESM6_ESM.doc (91 kb)
ESM 6 Representative feldspar compositions from electron microprobe analysis. (DOC 91 kb)


  1. Ashley PM, Cook NDJ, Hill RL, Kent AJR (1994) Shoshonitic lamprophyre dykes and their relation to mesothermal Au–Sb veins at Hillgrove, New South Wales, Australia. Lithos 32:249–272CrossRefGoogle Scholar
  2. Ashley PM, Creagh CJ, Ryan CG (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold–antimony deposits, NSW, Australia. Miner Depos 35:285–301CrossRefGoogle Scholar
  3. Aylemore MG, Graham J (1992) Arsenopyrite as a host for refractory gold. In: Griffin BJ, Johnson AWS, Kuo J, Lincoln FJ (eds) Proc. ACEM-12 and ANZSCB-11: The 1992 Joint Conference on Electron Microscopy and Cell Biology, Electron Microscopy in Mining, Exploration and Metallurgy, Perth, 43 p.Google Scholar
  4. Barnicoat AC, Fare RJ, Groves DI, McNaughton NJ (1991) Syn-metamorphic lode–gold deposits in high-grade Archean setting. Geol 19:921–924CrossRefGoogle Scholar
  5. Beaudoin A, Trudel P (1989) Géologie des mines New Alger, Wood Cadillac, Central Cadillac, Pandora, Lapa Cadillac et Mic Mac. Ministère de l'Énergie et des Ressources, Québec, MB 88-25. 189 pGoogle Scholar
  6. Bucci LA, Hagemann SG, Groves DI, Standing JG (2002) The Archean Chalice gold deposit: a record of complex, multistage, high-temperature hydrothermal activity and gold mineralisation associated with granitic rocks in the Yilgarn Craton, Western Australia. Ore Geol Rev 19:23–67CrossRefGoogle Scholar
  7. Bucci LA, McNaughton NJ, Fletcher IR, Groves DI, Kositcin N, Stein HJ, Hagemann SG (2004) Timing and duration of high-temperature gold mineralization and spatially associated granitoid magmatism at Chalice, Yilgarn Craton, Western Australia. Econ Geol 99:1123–1144CrossRefGoogle Scholar
  8. Buchholz P, Oberthür T, Lüders V, Wilkinson J (2007) Multistage Au–As–Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands Greenstone belt, Zimbabwe: a combined geochemical, mineralogical, stable isotope, and fluid inclusion study. Econ Geol 102:347–378CrossRefGoogle Scholar
  9. Cabri LJ (1992) The distribution of trace precious metals in minerals and mineral products. Min Mag 56(3):289–308CrossRefGoogle Scholar
  10. Cathelineau M, Boiron MC, Holliger P, Marion P, Denis M (1989) Gold in arsenopyrite: crystal chemistry, location and state, physical and chemical conditions of deposition. In: Keays RR, Ramsay R, Groves DI (eds) The Geology of gold deposits: the perspective in 1988. Economic Geology Monograph 6, pp. 328–341Google Scholar
  11. Chown EH, Hicks J, Phillips GN, Townend R (1984) The disseminated Archaean Big Bell gold deposit, Murchison Province, Western Australia; an example of premetamorphic hydrothermal alteration. In: Foster RP (ed) Gold’82; the geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 305–324Google Scholar
  12. Chown EH, Daigneault R, Mueller WU, Mortensen J (1992) Tectonic evolution of the Northern Volcanic Zone of the Abitibi Belt. Can J Earth Sci 29:2211–2225CrossRefGoogle Scholar
  13. Colvine AC (1989) An empirical model for the formation of Archean gold deposits: products of final cratonization of the Superior Province, Canada. In: Keays RR, Ramsay R, Groves DI (eds) The Geology of gold deposits: the perspective in 1988. Economic Geology Monograph 6, pp. 37–53Google Scholar
  14. Cook NJ, Chryssoulis SL (1990) Concentrations of “invisible gold” in the common sulfides. Can Mineral 28:1–16Google Scholar
  15. Daigneault R, Mueller WU, Chown EH (2002) Oblique Archean subduction: accretion and exhumation of an oceanic arc during dextral transpression, Southern Volcanic Zone, Abitibi Subprovince, Canada. Precambrian Res 115:261–290CrossRefGoogle Scholar
  16. Dalstra HJ, Bloem EJM, Ridley JR (1997) Gold in amphibolite facies terrains and its relationship to metamorphism, exemplified by syn-peak metamorphic gold in the Transvaal deposit, Yilgarn block, Western Australia. Chron Rech Min 529:3–24Google Scholar
  17. Davis DW (2002) U–Pb geochronology of Archean metasedimentary rocks in the Pontiac and Abitibi subprovinces, Quebec, constraints on timing, provenance and regional tectonics. Precambrian Res 115:97–117CrossRefGoogle Scholar
  18. Dimroth E, Imreh L, Rocheleau M, Goulet N (1982) Evolution of the south-central part of the Archean Abitibi belt, Quebec. Part I: stratigraphy and paleogeographic model. Can J Earth Sci 19:1729–1758CrossRefGoogle Scholar
  19. Doucet P, Lafrance B (2005) Le potential aurifère en profondeur du camp minier de Cadillac. Ministère des Ressources Naturelles et de la Faune du Québec, PRO-2005-01, 14 pGoogle Scholar
  20. Dubé B, Gosselin P (2007) Greenstone-hosted quartz–carbonate vein deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, pp. 49–73Google Scholar
  21. Ducharme Y, Stevenson RK, Machado N (1997) Sm–Nd geochemistry and U–Pb geochronology of the Preissac and Lamotte leucogranites, Abitibi Subprovince. Can J Earth Sci 34:1059–1071CrossRefGoogle Scholar
  22. Dugdale AL (1996) Multiple vein arrays and zoned alteration at Bronzewing gold deposits. W.A. Geoscience for the community, 13th Australian geological convention, 120 pGoogle Scholar
  23. Eisenlohr BN, Groves DI, Partington GA (1989) Crustal-scale shear zones and their significance to Archean gold mineralization in Western Australia. Miner Depos 24(1):1–8CrossRefGoogle Scholar
  24. Feng R, Kerrich R (1992) Geodynamic evolution of the Southern Abitbi and Pontiac terranes: evidence from geochemistry of granitoid magma series (2700–2630). Can J Earth Sci 29:2266–2286CrossRefGoogle Scholar
  25. Fleet ME, Mumin H (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am Mineral 82:182–193Google Scholar
  26. Gebre-Mariam M, Hagemann SG, Groves DI (1995) A classification scheme for epigenetic Archaean lode–gold deposits. Miner Depos 30(5):408–410CrossRefGoogle Scholar
  27. Genkin AD, Bortnikov NS, Cabri LJ, Wagner FE, Stanley CJ, Safonov YG, McMahon G, Friedl J, Kerzin AL, Gamyanin GN (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ Geol 93:463–487CrossRefGoogle Scholar
  28. Grant JA (1986) The isocon diagram: a simple solution to Gresen’s equation for metasomatic alteration. Econ Geol 81:1976–1982CrossRefGoogle Scholar
  29. Groves DJ (1993) The crustal continuum model for late Archean lode–gold deposits of the Yilgarn Block, Western Australia. Miner Deposita 28:366–374CrossRefGoogle Scholar
  30. Groves DI, Phillips GN (1987) The genesis and tectonic controls on Archean gold deposits of the Western Australian Shield: a metamorphic-replacement model. Ore Geol Rev 2:287–322CrossRefGoogle Scholar
  31. Groves DI, Goldfard RJ, Grebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  32. Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding, problems, future research, and exploration significance. Econ Geol 98:1–29Google Scholar
  33. Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. In: Hagemann SG, Brown PE (eds) Gold in 2000. Society of Economic Geologists, Reviews in Economic Geology 13, pp. 9–68Google Scholar
  34. Hagemann SG, Groves DI, Ridley JR, Vearncombe JR (1992) The Archean lode gold deposits at Wiluna, Western Australia: high-level brittle-style mineralization in a strike-slip regime. Econ Geol 87:1022–1053CrossRefGoogle Scholar
  35. Hodgson CJ (1993) Mesothermal lode–gold deposits. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposits modelling. Geological Association of Canada, Special Paper 40, pp. 635–678Google Scholar
  36. Imreh L (1984) Sillon de La Motte-Vassan et son avant-pays méridional: Synthèse volcanogénique, lithostratigraphique et gîtologique. Ministère de l’Énergie et des Ressources, Québec, MM 82-04, 72 pGoogle Scholar
  37. Johan Z, Marcoux E, Bonnemaison M (1989) Arsenopyrite aurifère: mode de substitution de Au dans la structure FeAsS. C R Acad Sci (Paris) 308:185–191Google Scholar
  38. Kent AJR, McDougall I (1996) 40Ar–39Ar and U–Pb age constraints on the timing of gold mineralization in the Kalgoorlie gold field, Western Australia. Econ Geol 91:795–799CrossRefGoogle Scholar
  39. Kerrich R, Cassidy KF (1994) Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation—Archean to present: a review. Ore Geol Rev 9:263–310CrossRefGoogle Scholar
  40. Kerrich R, Goldfarb RJ, Groves DI, Garwin S (2000) The geodynamics of the world-class gold deposits: characteristics, space–time distribution and origins. In: Hagemann SG, Brown PE (eds) Gold in 2000, Reviews in Economic Geology 13: 501–552Google Scholar
  41. Knight JT, Groves DI, Ridley JR (1993) District-scale structural and metamorphic controls on Archean lode–gold mineralization in the amphibolite facies Coolgarlie goldfield, Western Australia. Miner Depos 28:436–456CrossRefGoogle Scholar
  42. Kolb J, Hellmann A, Rogers A, Sinderin S, Vennemann T, Böttcher ME, Meyer MF (2004a) The role a transcrustal shear zone in orogenic gold mineralization at the Ajjanahalli Mine, Dharwar Craton, South India. Econ Geol 99:743–759CrossRefGoogle Scholar
  43. Kolb J, Rogers A, Meyer MF, Venneman TW (2004b) Development of fluid conduits in the auriferous shear zones of the Hutti gold mine, India: evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics 378:65–84CrossRefGoogle Scholar
  44. Kolb J, Rogers A, Meyer M (2005) Relative timing of deformation and two-stage gold mineralization at the Hutti Mine, Dharwar Craton, India. Miner Depos 40:156–174CrossRefGoogle Scholar
  45. Landry J (1991) Volcanologie physique et sédimentologie du Groupe volcanique de Piché et relations stratigraphiques avec les Groupes sédimentaires encaissants de Pontiac et de Cadillac. M.Sc. thesis, Université du Québec à Chicoutimi, Chicoutimi, Québec, 115 pGoogle Scholar
  46. Larocque ACL, Hodgson CJ, Cabri LJ, Jackman JA (1995) Ion-microprobe analysis of pyrite, chalcopyrite and pyrrhotite from the Mobrun VMS deposit in northwestern Quebec: evidence for metamorphic remobilization of gold. Can Mineral 33:373–388Google Scholar
  47. Latulippe M (1976) Excursion géologique Val-d’Or—Malartic. Ministère des Richesses naturelles, Québec; DP-367. 124 pGoogle Scholar
  48. Lentz DR (2002) Sphalerite and arsenopyrite at the Brunswick no. 12 massive-sulfide deposit, Bathurst camp, New Brunswick: constraints on P–T evolution. Can Mineral 40:19–31CrossRefGoogle Scholar
  49. Ludden J, Hubert C (1986) A model for the geological evolution of the late Archean Abitibi greenstone belt of Canada. Geology 14:707–711CrossRefGoogle Scholar
  50. McClenaghan SH, Lentz DR, Cabri LJ (2004) Abundance and speciation of gold in massive sulfides of the Bathurst mining camp, New Brunswick, Canada. Can Mineral 42:1383–1403CrossRefGoogle Scholar
  51. McCuaig TC, Kerrich R (1998) P–T–t–deformation–fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453CrossRefGoogle Scholar
  52. Mikucki EJ (1998) Hydrothermal transport and depositional processes in Archean lode–gold systems: a review. Ore Geol Rev 13:307–321CrossRefGoogle Scholar
  53. Mikucki EJ, Ridley JR (1993) The hydrothermal fluid of Archean lode–gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages. Miner Depos 28:469–481CrossRefGoogle Scholar
  54. Morey AA, Tomkins AG, Bierlein FP, Weinberg RF, Davidson GJ (2008) Bimodal distribution of gold in pyrite and arsenopyrite: examples from the Archean Boorara and Bardoc Shear systems, Yilgarn Craton, Western Australia. Econ Geol 103:599–614CrossRefGoogle Scholar
  55. Morin D, Jébrak M, Beaufort D, Meunier A (1993) Metamorphic evolution of the late Archean Cadillac Tectonic Zone, McWatters, Abitibi belt, Quebec. J Metamorph Geol 11:121–135CrossRefGoogle Scholar
  56. Mueller AG, Campbell IH, Schiotte L, Sevigney JH, Layer PW (1996a) Constraints on the age of granitoid emplacement, metamorphism, gold mineralization, and subsequent cooling of the Archean greenstone terrane at Big Bell, Western Australia. Econ Geol 91:896–915CrossRefGoogle Scholar
  57. Mueller WU, Daigneault R, Mortensen J, Chown EH (1996b) Archean terrane docking: upper crust collision tectonics, Abitibi Greenstone Belt, Quebec, Canada. Tectonophysics 265:127–150CrossRefGoogle Scholar
  58. Muir TL (2002) The Hemlo gold deposit, Ontario, Canada: principal deposit characteristics and constraints on mineralization. Ore Geol Rev 21:1–66CrossRefGoogle Scholar
  59. Mumin AH, Fleet ME, Chryssoulis SL (1994) Gold mineralization in As-rich mesothermal gold ores of the Bogosu–Prestea mining district of the Ashanti Gold Belt, Ghana: remobilization of “invisible” gold. Miner Depos 29:445–460CrossRefGoogle Scholar
  60. Neumayr P, Hagemann SG (2002) Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: relationship to auriferous fluids in adjacent second- and third-order shear zones. Econ Geol 97:1203–1225CrossRefGoogle Scholar
  61. Neumayr P, Cabri LJ, Groves DI, Mikucki EJ, Jackman JA (1993) The mineralogical distribution of gold and relative timing of gold mineralization in two Archaean settings of high metamorphic grade in Australia. Can Mineral 31:711–725Google Scholar
  62. Neumayr P, Hagemann SG, Couture J-F (2000) Structural setting textures and timing of hydrothermal vein systems in the Val-d’Or camp, Abitibi, Canada: implications for the evolution of transcrustal, second- and higher-order fault zones and gold mineralization. Can J Earth Sci 37:95–115CrossRefGoogle Scholar
  63. Neumayr P, Hagemann SG, Banks DA, Yardley BWD, Couture J-F, Landis GP, Rye R (2007) Fluid chemistry and evolution of hydrothermal fluids in an Archean transcrustal fault zone network: the case of the Cadillac Tectonic Zone, Abitibi greenstone belt, Canada. Can J Earth Sci 44:745–773CrossRefGoogle Scholar
  64. Norman M, Robinson P, Clark D (2003) Major- and trace-element analysis of sulphide ores by laser-ablation ICP–MS, solution ICP–MS, and XRF: new data on international reference materials. Can Min 41:293–305CrossRefGoogle Scholar
  65. Oberthür T, Weiser T, Amanor JA, Chryssoulis SL (1997) Mineralogical setting and distribution of gold in quartz veins and sulfide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: genetic implications. Miner Depos 32:2–15CrossRefGoogle Scholar
  66. Pal N, Mishra B (2002) Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit of Hutti, eastern Dharwar Craton, India. Miner Depos 37(8):722–736CrossRefGoogle Scholar
  67. Penczak RS, Mason R (1999) Characteristics and origin of Archean premetamorphic hydrothermal alteration at the Campbell gold mine, northwestern Ontario, Canada. Econ Geol 94(4):507–528CrossRefGoogle Scholar
  68. Phillips GN, De Nooy D (1988) High-grade metamorphic processes which influence Archean gold deposits, with particular reference to Big Bell, Australia. J Metamorph Geol 6:95–114CrossRefGoogle Scholar
  69. Phillips GN, Groves DI (1983) Fluid access and fluid–wallrock interaction in the genesis of the Archean gold–quartz vein deposit at Hunt Mine, Kambalda, Western Australia. In: Foster RP, Balkema AA (eds) Proceedings of Gold ’82: the geology, geochemistry and genesis of gold deposits. Rotterdam, the Netherlands, pp. 389–416Google Scholar
  70. Phillips GN, Powell R (2009) Formation of gold deposits: review and evaluation of the continuum model. Earth Sci Rev 94:1–21CrossRefGoogle Scholar
  71. Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatization model. J Metamorph Geol 28:689–718CrossRefGoogle Scholar
  72. Powell WG, Pattinson DRM (1997) An exsolution origin for low-temperature sulfides at the Hemlo gold deposit, Ontario, Canada. Econ Geol 92:569–577CrossRefGoogle Scholar
  73. Powell WG, Carmichael DM, Hodgson CJ (1995a) Conditions and timing of metamorphism in the southern Abitibi greenstone belt, Quebec. Can J Earth Sci 32:787–805CrossRefGoogle Scholar
  74. Powell WG, Hodgson CJ, Hanes JA, Carmichael DM, McBride S, Farrar E (1995b) 40Ar/39Ar geochronological evidence for multiple postmetamorphic hydrothermal events focused along faults in the southern Abitibi greenstone belt. Can J Earth Sci 32:768–786CrossRefGoogle Scholar
  75. Powell WG, Pattinson DRM, Johnston P (1999) Metamorphic history of the Hemlo deposit from Al2SiO5 mineral assemblages, with implications for the timing of mineralization. Can J Earth Sci 36:33–46CrossRefGoogle Scholar
  76. Ridley J, Groves DI, Hagemann SG (1995) Exploration and deposit models for gold deposits in amphibolite/granulite facies terrains. MERIWA Rep 142, 126 pGoogle Scholar
  77. Ridley J, Groves DI, Knight JT (2000) Gold deposits in amphibolite and granulite facies terranes of the Archean Yilgarn Craton, Western Australia: evidence and implications of synmetamorphic mineralization. In: Spry PG, Marshall B, Vokes FM (eds) Metamorphosed and metamorphogenic ore deposits. Society of Economic Geologists, Reviews in Economic Geology 11, pp. 265–290Google Scholar
  78. Robert F (1989) Internal structure of the Cadillac tectonic zone southeast of Val-d’Or, Abitibi greenstone belt, Quebec. Can J Earth Sci 26:2661–2675CrossRefGoogle Scholar
  79. Robert F, Poulsen KH (2001) Vein formation and deformation in greenstone gold deposits. In: Richards JP, Tosdal RM (eds) Structural controls on ore genesis. Society of Economic Geologists, Reviews in Economic Geology 14, pp. 111–155Google Scholar
  80. Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications in natural assemblages. Can Mineral 23:517–534Google Scholar
  81. Simard M (2011) Multi événements de deformation, de métamorphisme et d’hydrothermalisme à l’origine du gisement Lapa. PhD thesis, Université du Québec à Chicoutimi, 498 pGoogle Scholar
  82. Smith DS (1996) Hydrothermal alteration at the Mineral Hill mine, Jardine, Montana: a lower amphibolite facies Archean lode gold deposit of probable synmetamorphic origin. Econ Geol 91:723–750CrossRefGoogle Scholar
  83. Sung YH, Brugger J, Ciobanu CL, Pring A, Skinner W, Nugus M (2009) Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner Depos 44:765–791CrossRefGoogle Scholar
  84. Tarnocai CA, Hattori K, Cabri LJ (1997) “Invisible” gold in sulfides from the Campbell mine, Red Lake greenstone belt, Ontario: evidence for mineralization during peak of metamorphism. Can Mineral 35:805–815Google Scholar
  85. Thébaud N, Philippot P, Rey P, Brugger J, Van Kranendonk M, Grassineau N (2008) Polyphased fluid–rock interaction in the mid-Archaean and implication of gold pre-concentration: example from the Warrawoona Syncline (WA). Earth Planet Sci Lett 272:639–655CrossRefGoogle Scholar
  86. Thompson PH (2003) Toward a new metamorphic framework for gold exploration in the Red Lake greenstone belt. Open File Report, Ontario Geological Survey, 52 pGoogle Scholar
  87. Thurston PC, Ayer JA, Goutier J, Hamilton MA (2008) Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration for syngenetic mineralization. Econ Geol 103:1097–1134CrossRefGoogle Scholar
  88. Tomkins AC, Grundy C (2009) Upper temperature limits of orogenic gold deposit formation: constraints from the granulite-hosted Griffin’s Find deposit, Yilgarn Craton. Econ Geol 104:669–685CrossRefGoogle Scholar
  89. Tomkins AG, Mavrogenes JA (2001) Redistribution of gold within arsenopyrite and löllingite during pro- and retrograde metamorphism: application to timing of mineralization. Econ Geol 96:525–534CrossRefGoogle Scholar
  90. Tomkins AG, Pattinson DRM, Zaleski E (2004) The Hemlo gold deposit, Ontario: an example of melting and mobilization of a precious metal–sulfosalt assemblage during amphibolite facies metamorphism and deformation. Econ Geol 99:1063–1084CrossRefGoogle Scholar
  91. Tourigny G, Hubert C, Bouchard M, Sansfaçon R (1991) Géologie structurale. In: Trudel P, Sauvé P, Tourigny G, Hubert C, Hoy L (eds) Synthèse des caractéristiques géologiques des gisements d’or de la région de Cadillac (Abitibi), Ministère des Ressources Naturelles MM 91-01, pp. 13–22Google Scholar
  92. Trudel P, Sauvé P, Tourigny G, Hubert C, Hoy L (1992) Synthèse des caractéristiques géologiques des gisements d'or de la région de Cadillac, Abitibi. Ministère des Ressources Naturelles, Québec, MM 91-01. 106 pGoogle Scholar
  93. Vaughan JP, Kyin A (2004) Refractory gold ores in Archaean greenstones, Western Australia: mineralogy, gold paragenesis, metallurgical characterization and classification. Mineral Mag 68:255–277CrossRefGoogle Scholar
  94. Wagner FE, Marion PH, Regnard JR (1986) Mossbauer study of the chemical state of gold in gold ores. Gold 100: South African Institute of Mining and Metallurgy International Conference on Gold. Proceedings 2:435–443Google Scholar
  95. Williams-Jones AE, Normand C (1997) Controls of mineral parageneses in the system Fe–Sb–S–O. Econ Geol 92:308–324CrossRefGoogle Scholar
  96. Williams-Jones AE, Bowell RJ, Migdlsov AA (2009) Gold in solution. Elements 5:281–287CrossRefGoogle Scholar
  97. Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom 17:406–409CrossRefGoogle Scholar
  98. Witt WK (1993) Regional metamorphic controls on alteration associated with gold mineralization in the Eastern Goldfields province, Western Australia: implications for the timing and origin of Archean lode–gold deposits. Geol 19:982–985CrossRefGoogle Scholar
  99. Witt WK, Vanderhor F (1998) Diversity within a unified model for Archean gold mineralization in the Yilgarn Craton of Western Australia: an overview of the late-orogenic, structurally-controlled gold deposits. Ore Geol Rev 13:29–64CrossRefGoogle Scholar
  100. Yang S, Blunn N, Rahders E, Zhang Z (1998) The nature of invisible gold in sulfides from the Xiangxi Au–Sb–W ore deposit in northwestern Hunan, People’s Republic of China. Can Mineral 36:1361–1372Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Simard
    • 1
    Email author
  • D. Gaboury
    • 2
  • R. Daigneault
    • 2
  • P. Mercier-Langevin
    • 3
  1. 1.Agnico-Eagle Mines Ltd—Division ExplorationVal d’OrCanada
  2. 2.Centres d’Études sur les Ressources MinéralesUniversité du Québec à ChicoutimiChicoutimiCanada
  3. 3.Geological Survey of CanadaQuebecCanada

Personalised recommendations