Advertisement

Mineralium Deposita

, Volume 48, Issue 4, pp 423–435 | Cite as

Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source

  • M. Depiné
  • H. E. FrimmelEmail author
  • P. Emsbo
  • A. E. Koenig
  • M. Kern
Letter

Abstract

The first systematic analyses of the trace and rare earth element (REE) distribution in uraninite from various gold-bearing conglomerates of the Mesoarchaean Central Rand Group in South Africa’s Witwatersrand Basin by in situ laser ablation-inductively coupled plasma-mass spectrometry confirms a placer origin for the uraninite and a magmatogenic provenance thereof. The chemistry of commonly rounded to sub-rounded uraninite is highly variable from grain to grain but generally marked by elevated Th, W, Bi, Mo, Ta, Y, REE contents and unusually high Au concentrations. Especially, the high Th contents and the chondrite-normalised REE patterns are incompatible with post-sedimentary hydrothermal genetic models for the U mineralisation and point to derivation of the detrital uraninite from a high-temperature, magmatogenic, presumably granitic to pegmatitic source. The elevated Au concentrations (of as much as 67 ppm) in this uraninite are unique to the Witwatersrand and hint at a granitic hinterland that was enriched in both U and Au, thus presenting a potential source domain for some of the detrital gold in the Witwatersrand conglomerates. Minute fracture fills of brannerite in close proximity to the larger, rounded uraninite grains are devoid of detectable Bi, Mo, REE and Au and have only very low concentrations of Th, W, Ta and Y. This is explicable by crystallisation from a low-temperature hydrothermal fluid. Thus, Witwatersrand U phases show, analogous to many other ore constituents, such as pyrite and gold, clear evidence of partial, short-range mobilisation of originally detrital particles by post-sedimentary fluids.

Keywords

Uraninite Witwatersrand Trace elements Gold Archaean atmosphere 

Notes

Acknowledgments

H. Brätz and U. Schüßler helped with LA-ICP-MS and EMP analyses, respectively. We thank W.E.L. Minter for providing some of the analysed samples from historic mine sites. J. Mercadier and L. Robb are thanked for their thorough reviews of the original manuscript. Financial support from the Deutsche Forschungsgemeinschaft (DFG grants FR2183/3-1 and FR2183/3-2) is gratefully acknowledged.

Supplementary material

126_2013_458_MOESM1_ESM.xlsx (14 kb)
ESM Table 1 Representative electron microprobe analyses of individual uraninite grains from Central Rand Group conglomerate beds (XLSX 13 kb)
126_2013_458_MOESM2_ESM.xlsx (46 kb)
ESM Table 2 LA-ICP-MS analyses of individual uraninite grains from Central Rand conglomerates (XLSX 45 kb)
126_2013_458_Fig8_ESM.jpg (31 kb)
ESM Fig. 8

Correlation diagram of Ag versus Au contents in uraninite grains from different samples of the Vaal Reef at Vaal Reefs Mine (VVR29, VVR39, VVR66), the Vaal Reef at Stillfontein Mine (SVR3, SVR6), the Vaal Reef at President Steyn Mine (HFW60), the Carbon Leader Reef at West Driefontein Mine (HFW59), the Saaiplaas Reef at Saaiplaas Mine (HFW61), and the Steyn Reef at President Steyn Mine (HFW106) (JPEG 31 kb)

126_2013_458_MOESM3_ESM.tif (49.1 mb)
High Resolution Image (TIFF 50304 kb)

References

  1. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. GeochimCosmochimActa 53:197–214CrossRefGoogle Scholar
  2. Barnicoat AC, Henderson IHC, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Muntingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824CrossRefGoogle Scholar
  3. Buck SG, Minter WEL (1985) Placer formation by fluvial degradation of an alluvial fan sequence: the Proterozoic Carbon Leader placer, Witwatersrand Supergroup, South Africa. J Geol Soc Lond 142:757–764CrossRefGoogle Scholar
  4. Depiné M, Frimmel HE, von Seckendorff V, Harris C (2010) Pre-Witwatersrand LREE and potassic high-T alteration of mafic hinterland to the Central Rand Basin, South Africa. IMA2010, 20th General Meeting Internatl. Mineralog. Association, 21–27, August 2010, Budapest. Acta Mineralogica-Petrographica 6:256Google Scholar
  5. Drennan GR, Robb LJ, Meyer FM, Armstrong RA, de Bruiyn H (1990) The nature of the Archaean basement in the hinterland of the Witwatersrand Basin: II. A crustal profile west of the Welkom Goldfield and comparisons with the Vredefort crustal profile. S Afr J Geol 93:41–53Google Scholar
  6. Drennan GR, Robb LJ (2006) The nature of hydrocarbons and related fluids in the Witwatersrand Basin, South Africa; their role in metal distribution. In: Reimold WU, Gibson RL, Processes on the Early Earth. Geol Soc Amer Spec Paper 405:353–385Google Scholar
  7. England GL, Rasmussen B, Krapez B, Groves DI (2002) Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen–deficient atmosphere or hydrothermal evolution. Sedimentology 49:1122–1156CrossRefGoogle Scholar
  8. Feather CE (1981) Some aspects of Witwatersrand mineralization with special reference to uranium minerals. US GeolSurv Prof Papers 1161, pp Q1–Q28Google Scholar
  9. Feather CE, Koen GM (1975) The mineralogy of the Witwatersrand reefs. Miner Sci Eng 7:189–224Google Scholar
  10. Frimmel HE (1994) Metamorphism of Witwatersrand gold. Explor Min Geol 3:357–370Google Scholar
  11. Frimmel HE (2005) Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci Rev 70:1–46CrossRefGoogle Scholar
  12. Frimmel HE (2008) Earth’s continental crustal gold endowment. Earth Planet Sci Lett 267:45–55CrossRefGoogle Scholar
  13. Frimmel HE (2010) Verfügbarkeit von natürlich vorkommendem Uran. Unpublished Report Deutscher Bundestag, Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Berlin. pp 123Google Scholar
  14. Frimmel HE, Hallbauer DK, Gartz VH (1999) Gold mobilizing fluids in the Witwatersrand Basin: composition and possible sources. Mineral Petrol 66:55–81CrossRefGoogle Scholar
  15. Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand goldfields, the largest gold province in the world. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology one hundredth anniversary volume. Society of Economic Geologists, Littleton, pp 769–797Google Scholar
  16. Frimmel HE, Zeh A, Lehrmann B, Hallbauer D, Frank W (2009) Geochemical and geochronological constraints on the nature of the immediate basement next to the Mesoarchaean auriferous Witwatersrand Basin, South Africa. J Petrol 50:2187–2220CrossRefGoogle Scholar
  17. Frimmel HE, Schedel S, Brätz H (2012) The chemistry of uraninite as possible forensic tool for provenance analysis. GeoHannover 2012, GeoRohstoffe für das 21. Jahrhundert, 1st-3rd Oct, Hannover. Schriftenreihe der Deutsche Gesellschaft für Geowissenschaften 80:90Google Scholar
  18. Garayp E (1991) The UCT-Vaal Reef Project—final report. Unpublished Report, Department of Geology, University of Cape Town, pp 69Google Scholar
  19. Grandstaff DE (1981) Microprobe analyses of uranium and thorium in uraninite from the Witwatersrand, South Africa, and Blind River, Ontario, Canada. In: Armstrong, F.C. (ed) Genesis of uranium– and gold–bearing Precambrian quartz-pebble conglomerates. U.S. Geological Survey Professional Paper, J1–J5Google Scholar
  20. Graton LC (1930) Hydrothermal origin of the Rand gold deposits: part I. Testimony of the conglomerates. Econ Geol 25(suppl 3):1–185CrossRefGoogle Scholar
  21. Hallbauer DK (1986) The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium, and carbonaceous matter. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, p 731–752Google Scholar
  22. Hallbauer DK, Barton JM (1987) The fossil gold placers of the Witwatersrand. Gold Bulletin 20:68–79CrossRefGoogle Scholar
  23. Horscroft FDM, Mossman DJ, Reimer TO, Hennigh Q (2011) Witwatersrand metallogenesis: the case for (modified) syngenesis. SEPM Special Publication 101:75–95Google Scholar
  24. Janeczek J, Ewing RC (1992) Structural formula of uraninite. J Nucl Mater 190:128–132CrossRefGoogle Scholar
  25. Klemd R (1999) A comparison of fluids causing post-depositional hydrothermal alteration in Archaean basement granitoids and the Witwatersrand Basin. Miner Petrol 66:111–122Google Scholar
  26. Klemd R, Hallbauer DK (1987) Hydrothermally altered peraluminous granites as a provenance model for Witwatersrand sediments. Mineralium Deposita 22:227–235CrossRefGoogle Scholar
  27. Koenig AE, Rogers RR, Trueman CN (2009) Visualizing fossilization using laser ablation ICP-MS maps of trace elements in Late Cretaceous bones. Geology 37:511–514CrossRefGoogle Scholar
  28. Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta 67:709–731CrossRefGoogle Scholar
  29. Kositcin N, Krapez B (2004) SHRIMP U-Pb detrital zircon geochronology of the Late Archaean Witwatersrand Basin of South Africa: relation between zircon provenance age spectra and basin evolution. Precambrian Research 129:141–168CrossRefGoogle Scholar
  30. Krupp R, Oberthür T, Hirdes W (1994) The early Precambrian atmosphere and hydrosphere: thermodynamic constraints from mineral deposits. Econ Geol 89:1581–1598CrossRefGoogle Scholar
  31. Kirk J, Ruiz J, Chesley J, Walshe J, England G (2002) A major Archaean gold and crust-forming event in the Kaapvaal Craton, South Africa. Science 297:1856–1858CrossRefGoogle Scholar
  32. Law JDM, Phillips GN (2005) Hydrothermal replacement model for Witwatersrand gold. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology: one hundredth anniversary volume. Society of Economic Geologists, Littleton, pp 799–811Google Scholar
  33. Mellor ET (1916) The conglomerates of the Witwatersrand. Transactions of the Institute of Mining and Metallurgy 25:226–348Google Scholar
  34. Mercadier J, Cuney M, Lach P, Boiron MC, Bonhoure J, Richard A, Leisen M, Kister P (2011) Origin of uranium deposits revealed by their rare earth element signature. Terra Nova 23:264–269CrossRefGoogle Scholar
  35. Minter WEL (1978) A sedimentological synthesis of placer gold, uranium and pyrite concentrations in Proterozoic Witwatersrand sediments. In: Miall AD (ed) Fluvial sedimentology. Canadian Society of Petroleum Geologists, Calgary, pp 801–829Google Scholar
  36. Mossman DJ, Minter WEL, Dutkiewicz A, Hallbauer DK, George SC, Hennigh Q, Reimer TO, Horscroft FD (2008) The indigenous origin of Witwatersrand “carbon”. Precambrian Research 164:173–186CrossRefGoogle Scholar
  37. Oberthür T (1983) Metallogenetische Überlegungen zur Bildung des Carbon Leader Reef, Carletonville Goldfield, Witwatersrand, Südafrika. Unpubl. PhD thesis, University of CologneGoogle Scholar
  38. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter 21:115–144CrossRefGoogle Scholar
  39. Phillips GN, Myers RE (1989) Witwatersrand gold fields: part II. An origin for Witwatersrand gold during metamorphism and associated alteration. In: Keays RR, Ramsay WRH, Groves DI (eds) The geology of gold deposits: The perspective in 1988. Economic Geology Monograph vol. 6, Society of Economic Geologists, pp 598–608Google Scholar
  40. Phillips GN, Law JDM (1994) Metamorphism of the Witwatersrand gold fields: a review. Ore Geology Reviews 9:1–31CrossRefGoogle Scholar
  41. Phillips GN, Law JDM, Stevens G (1997) Alteration, heat, and Witwatersrand gold: 111 years after Harrison and Langlaagte. S Afr J Geol 100:377–392Google Scholar
  42. Phillips GN, Powell R (2011) Origin of Witwatersrand gold: a metamorphic devolatilisation-hydrothermal replacement model. Applied Earth Sciences (Trans Inst Min Metall B) 120:112–129Google Scholar
  43. Pretorius DA (1991) The sources of Witwatersrand gold and uranium: A continued difference of opinion. In: Hutchinson RW, Grauch RI (eds) Historical perspectives of genetic concepts and case histories of famous discoveries. Economic Geology Monographs vol. 8, Society of Economic Geologists, pp 139–163Google Scholar
  44. Ramdohr P (1958) New observations on the ores of the Witwatersrand in South Africa and their genetic significance. Transactions of the Geological Society of South Africa 61:1–50Google Scholar
  45. Rantzsch U, Gauert CDK, Van der Westhuizen WA, Duhamel I, Cuney M, Beukes GJ (2011) Mineral chemical study of U-bearing minerals from the Dominion Reefs. South AfricaMineralium Deposita 46:187–196CrossRefGoogle Scholar
  46. Reimer TO (1987) The Late Archaean Dominion conglomerates (South Africa): new aspects of their derivation and their relationship with those of the Witwatersrand. Neues Jahrbuch für Mineralogie, Abhandlungen 158:13–46Google Scholar
  47. Robb LJ, Meyer FM, Ferraz MF, Drennan GR (1990) The distribution of radioelements in Archaean granites of the Kaapvaal Craton, with implications for the source of uranium in the Witwatersrand Basin. South African Journal of Geology 93:5–40Google Scholar
  48. Robb LJ, Meyer FM (1990) The nature of the Witwatersrand hinterland: conjectures on the source-area problem. Econ Geol 85:511–536CrossRefGoogle Scholar
  49. Robb LJ, Robb VM (1998) Gold in the Witwatersrand Basin. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Council for Geoscience, Pretoria, vol.16, pp 294–349Google Scholar
  50. Robb LJ, Charlesworth EG, Drennan GR, Gibson RL, Tongu EL (1997) Tectono-metamorphic setting and paragenetic sequence of Au-U mineralisation in the Archaean Witwatersrand Basin, South Africa. Australian Journal of Earth Sciences 44:353–371CrossRefGoogle Scholar
  51. Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for Witwatersrand metallogeny. US Geol Surv Prof Paper 1161:N1–N29Google Scholar
  52. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, Series A 32:751–767CrossRefGoogle Scholar
  53. Stevens G, Gibson RL, Droop GTR (1997) Mid-crustal granulite facies metamorphism in the central Kaapvaal craton: the Bushveld Complex connection. Precambrian Res 82:113–132CrossRefGoogle Scholar
  54. Van Achterbergh E, Ryan CG, Griffin WL (2000) Glitter: on–line interactive data reduction for the Laser Ablation ICP–MS Microprobe. Ninth Annual V. M. Goldschmidt Conference, August 22–27, 1999, Cambridge, Massachusetts, abstract no. 7215Google Scholar
  55. Wagner PA (1929) Platinum deposits and mines of South Africa. Oliver and Boyd, EdinburghGoogle Scholar
  56. Young RB (1917) The blanket of the S. African goldfields. Gurney and Jackson, London, p 26Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Depiné
    • 1
  • H. E. Frimmel
    • 1
    • 2
    Email author
  • P. Emsbo
    • 3
  • A. E. Koenig
    • 3
  • M. Kern
    • 1
  1. 1.Geodynamics & Geomaterials Research Division, Institute of Geography & GeologyUniversity of WürzburgWürzburgGermany
  2. 2.Department of Geological SciencesUniversity of Cape TownCape TownSouth Africa
  3. 3.US Geol. SurveyDenverUSA

Personalised recommendations