Advertisement

Mineralium Deposita

, Volume 48, Issue 6, pp 767–786 | Cite as

Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids

  • Hazel M. PrichardEmail author
  • Robert D. Knight
  • Peter C. Fisher
  • Iain McDonald
  • Mei-Fu Zhou
  • Christina Y. Wang
Article

Abstract

The division of platinum-group elements (PGE) between those hosted in platinum-group minerals (PGM) versus those in solid solution in base metal sulfides (BMS) has been determined for ores from the PGE-bearing Ni-Cu-rich Jinchuan intrusion in northwest China. All the BMS are devoid of Pt and Ir, and magmatic BMS are also barren of Rh. These PGE may have been scavenged by arsenic to form PGM during magmatic crystallization of the BMS. Pd, Os, and Ru are recorded in BMS and Pd is predominantly in solid solution in pentlandite. Unlike the fresh magmatic ores, in altered or serpentinized ores, Pd-PGM are present. Froodite is hosted in magnetite, formed during alteration of BMS, accompanied by sulfur loss and liberation of Pd. Michenerite ([Pd,Pt]BiTe), sperrylite (PtAs2), and Au-bearing PGM are located in altered silicates. Irarsite (IrAsS) occurs mainly enclosed in BMS. Padmaite (PdBiSe), identified at the junctions of magnetite and BMS, was the last PGM to form and locally partially replaces earlier non-Se-bearing PGM. We propose that padmaite formed under oxidizing conditions during late local remobilization of Se from the BMS. Se-bearing PGM are rare and our review shows they are frequently associated with carbonate, suggesting that Pd and Se can be mobilized great distances in low pH oxidizing fluids and may be precipitated on contact with carbonate. S/Se ratios are used by researchers of magmatic Ni-Cu-PGE ores to determine sulfur loss, assuming Se is immobile and representative of magmatic sulfur content. This study shows that Se as well as S is potentially mobile and this should be considered in the use of S/Se ratios.

Keywords

Jinchuan Platinum Base metal sulfides Selenium Carbonate 

Notes

Acknowledgments

We would like to thank two referees Drs Belinda Godel and Louis Cabri and editors Chusi Li and Patrick Williams for their constructive comments on the paper. Field work was partially supported by a NSFC grant No. 40972060.

References

  1. Ballhaus C, Sylvester P (2000) Noble metal enrichment processes in the Merensky Reef, Bushveld Complex. J Petrol 41:545–561CrossRefGoogle Scholar
  2. Barnes S-J, Maier WD (2002) Platinum-group elements and microstructures of normal Merensky Reef from Impala platinum mines, Bushveld Complex. J Petrol 43:103–128CrossRefGoogle Scholar
  3. Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel-sulphide ore deposits and processes affecting their copper and platinum-group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds.). Econ Geol 100th Anniversary volume 179–213Google Scholar
  4. Barnes S-J, Cox RA, Zientek ML (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulfide droplets from the Medvezky Creek Mine, Noril’sk, Russia. Contrib Mineral Petrol 152:187–200CrossRefGoogle Scholar
  5. Barnes S-J, Prichard HM, Cox RA, Fisher PC, Godel B (2008) The location of the chalcofile and siderfile elements in platinum-group element ore deposits (a textural, microbeam and whole rock geochemical study): implications for the formation of the deposits. Chem Geol 248:295–317CrossRefGoogle Scholar
  6. Botelho NH, Moura MA, Peterson RC, Stanley CJ, Silva DVG (2006) Kalungaite, PdAsSe, a new platinum-group mineral from the Buraco do Ouro goldmine, Cavalcante, Goiás State, Brazil. Mineral Mag 70:123–130CrossRefGoogle Scholar
  7. Cabral AR, Lehmann B (2007) Seleniferous minerals of palladium and platinum from Ouro Preto-bearing mineralization in Brazil. Ore Geol Rev 32:681–688CrossRefGoogle Scholar
  8. Cabral AR, Lehmann B, Kwitko R, Cravo Costa CH (2002a) Palladium and platinum minerals from the Serra Pelada Au-Pd-Pt, Carajás mineral province, northern Brazil. Can Mineral 40:1451–1463CrossRefGoogle Scholar
  9. Cabral AR, Lehmann B, Kwitko R, Cravo Costa CH (2002b) The Serra Pelada Au-Pd-Pt deposit, Carajás mineral province, northern Brazil: Reconnaissance mineralogy and chemistry of very high grade palladian gold mineralization. Econ Geol 97:1127–1138Google Scholar
  10. Cabri LJ (1992) The distribution of trace precious metals in minerals and mineral products. Mineral Mag 56:298–308CrossRefGoogle Scholar
  11. Cabri LJ, Laflamme JHG (1976) The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area. Econ Geol 71:1159–1195CrossRefGoogle Scholar
  12. Cabri LJ, Sylvester P, Tubrett MN, Perogoedova A, Laflamme JHG (2003) Comparison of micro-PIXE and LAM-ICP-MS analyses for Pd and Rh. Can Mineral 41:321–329CrossRefGoogle Scholar
  13. Cabri LJ, Rudashevsky NS, Rudashevsky VN (2008) Current approaches for the process mineralogy of platinum-group element ores and tailings. Ninth Int. Congress Applied Mineralogy ICAM 2008. Aust Inst Min Metal Pub Series 8:9–17Google Scholar
  14. Cabri LJ, Martin CJ, Nelson M (2009) Deportment methodology for low-grade Ni-Cu-PGE ores. In Hamilton C, Hart B, Whittaker PJ (eds) Proc 48th Conf Metallur 3–15Google Scholar
  15. Cabri LJ, Choi Y, Nelson M, Tubrett M, Sylvester PJ (2010) Advances in precious metal trace element analyses for deportment using LAM-ICPMS. In Proc. 42nd Annual meeting Can Mineral Processors 181–196Google Scholar
  16. Chai G, Naldrett AJ (1992a) Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan Deposit, Northwest China. Econ Geol 87:1475–1495CrossRefGoogle Scholar
  17. Chai G, Naldrett AJ (1992b) The Jinchuan ultramafic intrusion: cumulate of a high-Mg basaltic Magma. J Petrol 33:277–303CrossRefGoogle Scholar
  18. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. Wiley, LondonGoogle Scholar
  19. Czamanske GK, Kunilov VE, Zientek ML, Cabri LJ, Likhachev AP, Calk LC, Oscarson RL (1992) A proton microprobe study of magmatic sulfide ores from the Noril'sk-Talnakh District, Siberia. Can Mineral 30:249–287Google Scholar
  20. Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2010a) The timing and formation of platinum-group minerals from the Creighton Ni-Cu-platinum-group element sulfide rich deposit, Sudbury, Canada: early crystallization of PGE-rich sulfarsenides. Econ Geol 105:1071–1096CrossRefGoogle Scholar
  21. Dare SAS, Barnes S-J, Prichard HM (2010b) The distribution of platinum-group elements (PGE) and other chalcofile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite. Miner Depos 45:765–793CrossRefGoogle Scholar
  22. Dare SAS, Barnes S-J, Prichard HM, Fisher PC (2011) Chalcophile and platinum-group element (PGE) concentrations in the sulfide minerals from the McCreedy East deposit, Sudbury, Canada, and the origin of PGE in pyrite. Miner Depos 46:381–407Google Scholar
  23. Eckstrand OR, Grinenko LN, Krouse HR, Paktunc AD, Schwann PL, Scoates, RF (1989) Preliminary data on sulfur isotopes and Se/S ratios, and the source of sulfur in magmatic sulfur in magmatic sulfides from the Fox River Sill, Molson Dykes and Thompson nickel deposits, northern Manitoba. Current Research, Part C, Geological Survey of Canada 89-1C 235–242Google Scholar
  24. Godel B, Barnes S-J (2008a) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): Implication for the formation of the reef. Chem Geol 248:272–294CrossRefGoogle Scholar
  25. Godel B, Barnes S-J (2008b) Image analysis and composition of platinum-group minerals in the J-M Reef, Stillwater Complex. Econ Geol 103:637–651CrossRefGoogle Scholar
  26. Godel B, Barnes S-J, Maier WD (2007) Platinum-group elements in sulfide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48:1569–1604CrossRefGoogle Scholar
  27. Godel B, González-Álvarez I, Barnes SJ, Barnes S-J, Parker P, Day J (2012) Sulfides and sulfarsenides from the rosie nickel prospect, Duketon Greenstone Belt, Western Australia. Econ Geol 107:275–294CrossRefGoogle Scholar
  28. Gruau G, Bernard-Griffiths J, Lécuyer C (1998) The origin of U-shaped rare earth patterns in ophiolite peridotites: assessing the role of secondary alteration and melt/rock reaction. Geochim Cosmochim Acta 62:3545–3560CrossRefGoogle Scholar
  29. Helmy HA, Ballhaus C, Berndt J, Bockrath C, Wohlgemuth-Ueberwassa C (2007) Formation of Pt, Pd and Ni tellurides: experiments in sulfide–telluride systems. Contrib Mineral Petrol 153:577–591CrossRefGoogle Scholar
  30. Holwell DA, McDonald I (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petrol 154:171–190CrossRefGoogle Scholar
  31. Holwell DA, McDonald I (2010) A review of the behavior of platinum-group elements within natural magmatic sulfide ore systems: the importance of semimetals in governing partitioning behavior. Platinum Met Rev 54:26–36CrossRefGoogle Scholar
  32. Holwell DA, McDonald I, Butler IB (2011) Precious metal enrichment in the Platreef, Bushveld Complex, South Africa: evidence from homogenized magmatic sulphide melt inclusions. Contrib Mineral Petrol 161:1011–1026CrossRefGoogle Scholar
  33. Hutchinson D, McDonald I (2008) Laser ablation ICP-MS study of platinum-group elements in sulfides from the Platreef at Turfspruit, northern limb of the Bushveld Complex, South Africa. Miner Depos 43:695–711CrossRefGoogle Scholar
  34. Huminicki MAE, Sylvester PJ, Cabri LJ, Lesher CM, Tubrett M (2005) Quantitative mass balance of platinum-group elements in the Kelly Lake Ni-Cu-PGE deposit, Copper Cliff Offset, Sudbury. Econ Geol 100:1631–1646CrossRefGoogle Scholar
  35. Huminicki MAE, Sylvester PJ, Lastra R, Cabri LJ, Evans-Lamswood D, Wilton DHC (2008) First report of platinum-group minerals from a hornblende gabbro dyke in the vicinity of the Southeast Extension Zone of the Voisey's Bay Ni-Cu-Co deposit, Labrador. Mineral Petrol 92:129–164CrossRefGoogle Scholar
  36. Karup-Moller S, Makovicky E, Barnes S-J (2008) The metal-rich portions of the phase system Cu-Fe-Pd-S at 1000 °C, 900 °C and 725 °C: implications for mineralization in the Skaergaard intrusion. Mineral Mag 72:941–951CrossRefGoogle Scholar
  37. Kwitko R, Cabral AR, Lehmann B, Laflamme JHG, Cabri L, Criddle AJ, Galbiatti HF (2002) Hongshiite, PtCu, from itabirite-hosted Au-Pd-Pt mineralization (Jacutinga), Itabira district, Minas Gerais, Brazil. Can Mineral 40:711–723CrossRefGoogle Scholar
  38. Lehmann J, Arndt N, Windley B, Zhou M-F, Wang CY, Harris C (2007) Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China. Econ Geol 102:75–94CrossRefGoogle Scholar
  39. Li C, Xu Z, de Waal SA, Ripley EM, Maier WD (2004) Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis. Miner Depos 39:159–172CrossRefGoogle Scholar
  40. Li XH, Su L, Chung S-L, Li ZX, Liu Y, Song B, Liu DY (2005) Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: associated with the 825 Ma south China mantle plume? Geochem Geophys Geosyst 6:Q11004. doi: 10.1029/2005GC001006 CrossRefGoogle Scholar
  41. Makovicky E (2002) Ternary and quaternary phase systems in PGE. In Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Min Metal Pet Sp 54:131–175Google Scholar
  42. Makovicky E, Karup-Moller S, Makovicky M, Rose-Hansen J (1990) Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral Petrol 42:307–319CrossRefGoogle Scholar
  43. McDonald I (2008) Platinum-group element and sulfide mineralogy in ultramafic complexes at western Andriamena, Madagascar. Trans Inst Min Metall B (Applied Earth Science) 117:1–10Google Scholar
  44. Mernagh TP, Heinrich CA, Leckie JF, Carville DP, Gilbert DJ, Valenta RK, Wyborn LAI (1994) Chemistry of low-temperature hydrothermal gold, platinum and palladium (±uranium) mineralization at Coronation Hill, Northern Territory, Australia. Econ Geol 89:1053–1073CrossRefGoogle Scholar
  45. Naldrett AJ (2004) Magmatic sulfide deposits: geology geochemistry and exploration. Springer, BerlinCrossRefGoogle Scholar
  46. Naldrett AJ, Lehmann J (1988) Spinel non-stoichiometry as the explanation for Ni-, Cu- and PGE-enriched sulfides in chromitites. In: Prichard HM, Potts PJ, Bowles JFW, Cribb SJ (eds) Geoplatinum ’87. Elsevier, London, pp 93–110Google Scholar
  47. Nickel EH (2002) An unusual occurrence of Pd, Pt, Au, Ag and Hg minerals in the Pilbara region of Western Australia. Can Mineral 40:419–433CrossRefGoogle Scholar
  48. Paar WH, Roberts AC, Criddle AJ, Topa D (1998) A new mineral, chrisstanleyite, Ag2Pd3Se4, from Hope’s Nose, Torquay, Devon, England. Mineral Mag 62(2):257–264CrossRefGoogle Scholar
  49. Paar WH, Topa D, Makovicky E, Sureda RJ, De Brodtkorb MK, Nickel EH, Putz H (2004) Jaguéite, Cu2Pd3Se4, a new mineral species from El Chire, La Rioja, Argentina. Can Mineral 42:1745–1755CrossRefGoogle Scholar
  50. Paar WH, Topa D, Makovicky E, Culetto FJ (2005) Milotaite, PdSbSe, a new palladium mineral species from Předbořice, Czech Republic. Can Mineral 43:689–694CrossRefGoogle Scholar
  51. Paktunc AD, Hulbert LJ, Harris DC (1990) Partitioning of the platinum-group and other trace elements in sulfides from the Bushveld Complex and Canadian occurrences of nickel–copper sulfides. Can Mineral 28:475–488Google Scholar
  52. Pirard C, Hatert F (2008) The sulfides and selenides of the Musonoï Mine, Kolwezi, Katanga, Democratic Republic of Congo. Can Mineral 46:219–231CrossRefGoogle Scholar
  53. Prichard HM, Ixer RA, Lord RA, Maynard J, Williams N (1994) Assemblages of platinum-group minerals and sulfides in silicate lithologies and chromite-rich rocks within the Shetland Ophiolite. Can Mineral 32:271–294Google Scholar
  54. Prichard HM, Sá JHS, Fisher PC (2001) Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuri Complex, Amapa, Northeastern Brazil. Can Mineral 39:377–396CrossRefGoogle Scholar
  55. Prichard HM, Hutchinson D, Fisher PC (2004) Petrology and crystallization history of multiphase sulfide droplets in a mafic dike from Uruguay: implications for the origin of Cu-Ni-PGE sulfide deposits. Econ Geol 99:365–376CrossRefGoogle Scholar
  56. Prichard HM, Fisher PC, McDonald I, Zhou M-F, Wang CY (2005) Platinum-group minerals in the Jinchuan complex, China. In: Törmänen TO, Alapieti TT (eds) 10th International Platinum Symposium, Platinum-group elements - from genesis to beneficiation and environmental impact, Program Abstracts, pp 219–222Google Scholar
  57. Queffurus M, Barnes, S-J (2010) The use of S/Se ratios in magmatic Ni-Cu-PGE sulfide deposits. 11th International Platinum Symposium, Program Abstracts, pp 21–24Google Scholar
  58. Ripley EM, Sarkar A, Li C (2005) Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Econ Geol 100:1349–1361CrossRefGoogle Scholar
  59. Seabrook CL, Prichard HM, Fisher PC (2004) Platinum-group minerals in the aglan Ni-Cu-(PGE) sulfide deposit, Cape Smith, Quebec, Canada. Can Mineral 42:485–497CrossRefGoogle Scholar
  60. Stanley CJ, Criddle AJ, Lloyd D (1990) Precious and base metal selenide mineralization at Hope’s Nose, Torquay, Devon. Mineral Mag 54:485–493CrossRefGoogle Scholar
  61. Stanley CJ, Criddle AJ, Forster H-J, Roberts AC (2002) Tischendorfite, Pd8Hg3Se9, a new mineral species from Tilkerode, Harz Mountains, Germany. Can Mineral 40:739–745CrossRefGoogle Scholar
  62. Sixth Geological Unit (1984) Geology of the Baijiaozuizi Cu–Ni sulfide deposit, Geological Survey of Gansu Province. Geological publishing House, BeijingGoogle Scholar
  63. Song X-Y, Zhou M-F, Wang CY, Qi L, Zhang C-J (2006) Role of crustal contamination in formation of the Jinchuan intrusion and its world-class Ni-Cu-(PGE) sulfide deposit, Northwest China. Int Geol Rev 48:1113–1132CrossRefGoogle Scholar
  64. Song X-Y, Keays RR, Zhou M-F, Qi L, Ihlenfeld C, Xiao J-F (2009) Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim Cosmochim Acta 73:404–424CrossRefGoogle Scholar
  65. Su S, Li C, Zhou M-F, Ripley EM (2008) Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China. Miner Depos 43:609–622CrossRefGoogle Scholar
  66. Thériault RM, Barnes S-J (1998) Compositional variations in Cu-Ni-PGE sulfides of the Dunka Road deposit, Duluth Complex, Minnesota: the importance of combined assimilation and magmatic processes. Can Mineral 36:869–886Google Scholar
  67. Tredoux M, Lindsay NM, Davies G, McDonald I (1995) The fractionation of platinum-group elements in magmatic systems, with the suggestion of a novel causal mechanism. S Afr J Geol 98:157–167Google Scholar
  68. Tomkins AG (2010) Wetting facilitates late-stage segregation of precious metal-enriched sulfosalt melt in magmatic sulfide systems. Geology 38:951–954CrossRefGoogle Scholar
  69. Vymazalová A, Laufek F, Drábek M, Cabral AR, Haloda J, Sidorinová T, Lehmann B, Galbiatti HF, Drahokoupil J (2011) Jacutingaite, IMA 2010–078. CNMNC Newsletter No. 8, April 2011, page 293. Mineral Mag 75:289–294CrossRefGoogle Scholar
  70. Wang CY, Prichard HM, Zhou M-F, Fisher PC (2008) Platinum-group minerals from the Jinbaoshan Pd–Pt deposit, SW China: evidence for magmatic origin and hydrothermal alteration. Miner Depos 43:791–803CrossRefGoogle Scholar
  71. Wood SA (2002) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, special volume. 54. In: Cabri LJ (ed) The aqueous geochemistry of the platinum-group elements with applications to ore deposits. Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, pp 211–249Google Scholar
  72. Yang X-Z, Ishihara S, Zhao D-H (2006) Genesis of the Jinchuan PGE deposit, China: evidence from fluid inclusions, mineralogy and geochemistry of precious elements. Mineral Petrol 86:109–128CrossRefGoogle Scholar
  73. Zhang M, Kamo SL, Li C, Hu P, Ripley EM (2010) Precise U-Pb zircon–baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, western China. Miner Depos 45:3–9CrossRefGoogle Scholar
  74. Zhou M-F, Yang Z-X, Song X-Y, Keays RR, Lesher CM (2002) Magmatic Ni- Cu- (PGE) sulphide deposits in China. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, special volume. 54 Institute of Mining, Metallurgy and Petroleum, Montreal, pp 619–636Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hazel M. Prichard
    • 1
    Email author
  • Robert D. Knight
    • 1
  • Peter C. Fisher
    • 1
  • Iain McDonald
    • 1
  • Mei-Fu Zhou
    • 2
  • Christina Y. Wang
    • 3
  1. 1.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  2. 2.Department of Earth SciencesUniversity of Hong KongHong KongChina
  3. 3.Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations