Advertisement

Mineralium Deposita

, Volume 47, Issue 7, pp 739–747 | Cite as

Metallogeny of precious and base metal mineralization in the Murchison Greenstone Belt, South Africa: indications from U–Pb and Pb–Pb geochronology

  • J. JaguinEmail author
  • M. Poujol
  • P. Boulvais
  • L. J. Robb
  • J. L. Paquette
Letter

Abstract

The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35 km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964 ± 7 and 2,970 ± 7 Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967 ± 48 Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97 Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.

Keywords

Gold mineralization VMS deposit Antimony Line Kaapvaal Craton Murchison range South Africa 

Notes

Acknowledgments

This work was funded by the National Institute of Sciences of the Universe (CNRS-INSU “Action Incitative”, France). We acknowledge C. Anhaeusser and J. Vearncombe for their comments. Thanks are also due to Bernd Lehmann and Hartwig Frimmel for editorial handling.

References

  1. Brandl G, Kröner A (1993) Preliminary results of single zircon studies from various Archaean rocks of the Northeastern Transvaal. Extended abstracts. In: Mabuza M, Maphalala R (eds) 16th Colloquium on African Geology. Geological Survey of Mines Department, 14–16th September 1993, Mbabane, Swaziland, pp 54–56Google Scholar
  2. Brandl G, Jaeckel P, Kröner A (1996) Single zircon age for the felsic Rubbervale Formation, Murchison Greenstone Belt, South Africa. S Afr J Geol 99:229–234Google Scholar
  3. de Beer JH, Stettler EH, Duvenhage AWA, Joubert SJ, Raath CJ (1984) Gravity and geoelectrical studies of the Murchison Greenstone Belt, South Africa. Trans Geol Soc S Afr 87:347–359Google Scholar
  4. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist W, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 523–560Google Scholar
  5. Graham RH (1974) A structural investigation of the southern part of the Limpopo belt and adjacent Kaapvaal Craton, South Africa. Research Institute of African Geology Annual Report 18, pp 63–69Google Scholar
  6. Groat LA, Giuliani G, Marshall DD, Turner D (2008) Emerald deposits and occurrences: a review. Ore Geol Rev 34:87–112CrossRefGoogle Scholar
  7. Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding problems, future research, and exploration significance. Econ Geol 98:1–29Google Scholar
  8. Jaguin J, Gapais D, Poujol M, Boulvais P, Moyen J-F (2012) The Murchison Greenstone Belt (South Africa): a general tectonic framework. S Afr J Geol 115:65–76CrossRefGoogle Scholar
  9. Kedda SW (1992) Geochemical and stable isotope studies of gold bearing granitoids in the Murchison Schist Belt, North Eastern Transvaal. Unpublished MSc thesis, University of the Witwatersrand, 241 ppGoogle Scholar
  10. Kedda SW, Robb LJ, Meyer FM, Verhagen BT (1990) Gold mineralization associated with albitized felsic intrusions in the Murchison Greenstone Belt, South Africa. Extended abstracts. In: Glover JE, Ho SE (eds) Third International Archaean Symposium. Geol Society of Australia, 17–21 September 1990, Perth, AustraliaGoogle Scholar
  11. Kröner A, Jaeckel P, Brandl G (2000) Single zircon ages for felsic to intermediate rocks from the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses, northern Kaapvaal Craton, South Africa. J Afr Earth Sci 30:773–793CrossRefGoogle Scholar
  12. Ludwig KR (1998) On the treatment of concordant uranium–lead ages. Geochim Cosmochim Acta 62:665–676CrossRefGoogle Scholar
  13. Ludwig, KR (2000) Isoplot/Ex: a geochronological toolkit for Microsoft Excel Berkeley Geochronology Center, BerkeleyGoogle Scholar
  14. Meteorex Limited (2011) Mine operations statistics, gold & antimony. Fact Sheet 2. http://www.metorexgroup.com/fact_sheet_02.htm. Accessed 19 March 2012
  15. Minnitt RCA, Anhaeusser CR (1992) Gravitational and diapiric structural history of the eastern portion of the Archaean Murchison Greenstone Belt, South Africa. J Afr Earth Sci 15:429–440CrossRefGoogle Scholar
  16. Nesbitt BE, Muehlenbachs K (1989) Geology, geochemistry, and genesis of mesothermal lode gold deposits of the Canadian Cordillera—evidence for ore formation from evolved meteoric water. Econ Geol Mon 6:553–563Google Scholar
  17. Pearton TN, Viljoen MJ (1986) Antimony mineralization in the Murchison Greenstone belt—an overview. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 293–320Google Scholar
  18. Poilvet JC, Poujol M, Pitra P, Van den Driessche J, Paquette JL (2011) The Montalet granite, Montagne Noire, France: an early Permian syn-extensional pluton as evidenced by new U–Th–Pb data on zircon and monazite. CR Geosci 343:454–461CrossRefGoogle Scholar
  19. Poujol M (2001) U–Pb isotopic evidence for episodic granitoid emplacement in the Murchison Greenstone Belt, South Africa. J Afr Earth Sci 33:155–163CrossRefGoogle Scholar
  20. Poujol M, Robb LJ (1999) New U–Pb zircon ages on gneisses and pegmatite from south of the Murchison Greenstone Belt, South Africa. S Afr J Geol 102:93–97Google Scholar
  21. Poujol M, Robb LJ, Respaut JP, Anhaeusser CR (1996) 3.07–2.97 Ga greenstone belt formation in the northeastern Kaapvaal Craton: implications for the origin of the Witwatersrand Basin. Econ Geol 91:1455–1461CrossRefGoogle Scholar
  22. Poujol M, Robb LJ, Respaut JP (1999) U–Pb and Pb–Pb isotopic studies relating to the origin of gold mineralization in the Evander Goldfield, Witwatersrand Basin, South Africa. Precambrian Res 95:167–185CrossRefGoogle Scholar
  23. S.A.C.S. (1980) The Murchison sequence. In: Kent LE (ed) Stratigraphy of South Africa, Part 1. Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. Handbook Geological Survey South Africa, pp 45–52Google Scholar
  24. Saager R (1973) Metallogenese präkambrischer Goldvorkommen in den vulkano-sedimentären Gesteinskomplexen (greenstone belts) der Swaziland Sequenz in Südafrika. Geol Rundschau 62:888–901CrossRefGoogle Scholar
  25. Saager R (1974) Geologische und geochemische Untersuchungen an primären und sekundären Goldvorkemmen im frühen Präkambriun Südafrikas: Ein Beitrag zur Deutung der primären Herkunft des Goldes in der Witwatersrand Lagerstätte. Universität Heidelberg, 150 ppGoogle Scholar
  26. Saager R, Köppel V (1976) Lead isotopes and trace elements from sulfides of Archaean greenstone belts in South Africa—a contribution to the knowledge of the oldest know mineralizations. Econ Geol 71:44–57CrossRefGoogle Scholar
  27. Schwarz-Schampera U, Terblanche H, Oberthür T (2010) Volcanic-hosted massive sulfide deposits in the Murchison Greenstone Belt, South Africa. Miner Deposita 45:113–145CrossRefGoogle Scholar
  28. Taylor RS (1981) Volcanogenic copper–zinc sulfide deposits of the Murchison greenstone belt, northeastern Transvaal. Unpublished PhD thesis, University of Durham, 361 ppGoogle Scholar
  29. Terblanche HK, Lewis RD (1995) An overview of the Maranda base metal mine. Extended abstracts. In: Barton JM and Copperthwaite YE (eds) Centennial Geocongress. Geological Society of South Africa, 3–7 April 1995, Johannesburg, South Africa, pp 111–114Google Scholar
  30. Vearncombe JR (1988) Structure and metamorphism of the Archean Murchison Belt, Kaapvaal Craton, South Africa. Tectonics 7:761–774CrossRefGoogle Scholar
  31. Vearncombe JR, Cheshire PE, de Beer JH, Killick AM, Mallinson WS, McCourt S, Stettler EH (1988) Structures related to the Antimony Line, Murchison Schist Belt, Kaapvaal Craton, South Africa. Tectonophysics 154:285–308CrossRefGoogle Scholar
  32. Vearncombe JR, Barton JM, Cheshire PE, de Beer JH, Stettler EH, Brandl G (1992) Geology, geophysics and mineralization of the Murchison Schist Belt, Rooiwater complex and surrounding granitoids. Geol Surv S Af Mem 81:139Google Scholar
  33. Viljoen RP, Saager R, Viljoen MJ (1969) Metallogenesis and ore control in the Steynsdorp Goldfield, Barberton Moutain Land, South Africa. Econ Geol 64:778–797CrossRefGoogle Scholar
  34. Viljoen RP, Saager R, Viljoen MJ (1970) Some thoughts on the origin and processes responsible for the concentration of gold in early Precambrian of southern Africa. Miner Deposita 5:164–180CrossRefGoogle Scholar
  35. Viljoen MJ, Van Vuuren CJJ, Pearton TN, Minnit RCA, Muff R, Cilliers P (1978) The regional geological setting of mineralization in the Murchison range with particular reference to antimony. In: Verwoerd WJ (ed) Mineralization in metamorphic terranes. Geological Society of South Africa Special Publication 4, pp 55–86Google Scholar
  36. Ward JHM (1998) Antimony. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Council for Geoscience, pp 59–65Google Scholar
  37. Ward JHW, Wilson MGC (1998) Gold outside the Witwatersrand Basin. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Council for Geoscience Handbook 16, Pretoria, South Africa, pp 350–386Google Scholar
  38. Zeh A, Gerdes A, Barton JM (2009) Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown arc. J Petrol 50:933–966CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Jaguin
    • 1
    Email author
  • M. Poujol
    • 1
  • P. Boulvais
    • 1
  • L. J. Robb
    • 2
  • J. L. Paquette
    • 3
  1. 1.Campus de Beaulieu Géosciences Rennes, UMR CNRS 6118, OSUR, Université Rennes 1Rennes CedexFrance
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK
  3. 3.UMR CNRS 6524, Laboratoire Magmas et VolcansClermont-Ferrand CedexFrance

Personalised recommendations