Mineralium Deposita

, Volume 47, Issue 8, pp 859–874 | Cite as

Structural and biological control of the Cenozoic epithermal uranium concentrations from the Sierra Peña Blanca, Mexico

  • Samuel Angiboust
  • Mostafa Fayek
  • Ian M. Power
  • Alfredo Camacho
  • Georges Calas
  • Gordon Southam
Article

Abstract

Epithermal uranium deposits of the Sierra Peña Blanca are classic examples of volcanic-hosted deposits and have been used as natural analogs for radionuclide migration in volcanic settings. We present a new genetic model that incorporates both geochemical and tectonic features of these deposits, including one of the few documented cases of a geochemical signature of biogenic reducing conditions favoring uranium mineralization in an epithermal deposit. Four tectono-magmatic faulting events affected the volcanic pile. Uranium occurrences are associated with breccia zones at the intersection of fault systems. Periodic reactivation of these structures associated with Basin and Range and Rio Grande tectonic events resulted in the mobilization of U and other elements by meteoric fluids heated by geothermal activity. Focused along breccia zones, these fluids precipitated under reducing conditions several generations of pyrite and uraninite together with kaolinite. Oxygen isotopic data indicate a low formation temperature of uraninite, 45–55°C for the uraninite from the ore body and ∼20°C for late uraninite hosted by the underlying conglomerate. There is geochemical evidence for biological activity being at the origin of these reducing conditions, as shown by low δ34S values (∼−24.5‰) in pyrites and the presence of low δ13C (∼−24‰) values in microbial patches intimately associated with uraninite. These data show that tectonic activity coupled with microbial activity can play a major role in the formation of epithermal uranium deposits in unusual near-surface environments.

Keywords

Uranium deposits Epithermal deposits Silicic volcanics Biogenic activity Stable isotope geochemistry Geothermal systems Cenozoic tectonics Breccias 

Notes

Acknowledgments

The authors thank A.L Saucedo (University of Manitoba), P. Goodell (University of Texas, El Paso), I. Reyes-Cortes, and R. de la Garza (Facultad de Ingeniería, Universidad Autónoma de Chihuahua) for fruitful discussions, comments, and assistance on the field. We are also indebted to Manuel Pubellier, David Thomas, and Virgil Lueth for valuable comments on the manuscript. This work was partially funded by an NSERC Discovery and CFI Grant to Fayek and the Canada Research Chair program. This manuscript greatly benefitted from the thorough reviews by Dr. Aleshyn and Associate Editor Michel Cuney and comments by the Editor Bernd Lehmann.

Supplementary material

126_2012_408_MOESM1_ESM.doc (74 kb)
Appendix 1Sulfur and carbon isotopic composition of sulfides and organic carbon, respectively (DOC 73 kb)

References

  1. Alba LA, Chavez R (1974) K-Ar ages of volcanic rocks from the Central Sierra de Peña Blanca, Chihuahua, Mexico. Isochron/West 10:21–23Google Scholar
  2. Aniel B, Leroy J (1985) The reduced uraniferous mineralization associated with the volcanic rocks of the Sierra Peña Blanca (Chihuahua, Mexico). Am Mineral 70:1290–1297Google Scholar
  3. Aniel-George B, Leroy JL, Poty B (1991) Volcanogenic uranium mineralizations in the Sierra Peña Blanca District, Chihuahua, Mexico: three genetic models. Econ Geol 86:233–248CrossRefGoogle Scholar
  4. Aranda-Gomez JJ, Housh TB, Luhr JF, Henry CD, Becker T, Chavez-Cabello G (2005) Reactivation of the San Marcos during mid-to-late tertiary extension, Chihuahua, Mexico. Geol Soc Am Spec Pap 393:509–521Google Scholar
  5. Berner RA (1985) Sulfate reduction, organic matter decomposition and pyrite formation. Phil Trans R Soc A315:25–38Google Scholar
  6. Blakeman RJ, Ashton JH, Boyce AJ, Fallick AE, Russell MJ (2002) Timing of interplay between hydrothermal and surface fluids in the Navan Zn+Pb orebody, Ireland: evidence from metal distribution trends, mineral textures and δ34S analyses. Econ Geol 97:73–91CrossRefGoogle Scholar
  7. Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental province, Mexico, revealed by U–Pb geochronology. J Petrology 49:47–77CrossRefGoogle Scholar
  8. Cai C, Dong H, Li H, Xiao X, Ou G, Zhang C (2007) Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai Deposit, NW China. Chem Geol 236:167–179CrossRefGoogle Scholar
  9. Calas G (1977) Les phénomènes d’altération hydrothermale et leur relation avec des minéralisations uranifères en milieu volcanique: le cas des ignimbrites tertiaires de la Sierra de Peña Blanca, Chihuahua. Sci Géol Bull 30:3–18Google Scholar
  10. Calas G (1979) Etude expérimentale du comportement de l’uranium dans les magmas: états d’oxydation et coordinance. Geochim Cosmochim Acta 43:1521–1531CrossRefGoogle Scholar
  11. Calas G, Allard T, Balan E, Morin G, Sorieul S (2004) Radiation-induced defects in nonradioactive natural minerals: mineralogical and environmental significance. Mater Res Soc Symp Proc 792:81–92Google Scholar
  12. Calas G, Agrinier P, Allard T, Ildefonse P (2008) Alteration geochemistry of the Nopal I uranium deposit (Chihuahua, Mexico), a natural analogue in volcanic tuffs. Terra Nova 20:206–212CrossRefGoogle Scholar
  13. Chabiron A, Cuney M, Poty B (2003) Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia). Miner Deposita 38:127–140Google Scholar
  14. Chapin CE (1979) Evolution of the Rio Grande rift—a summary. In: Riecker RE (ed) Rio Grande rift in tectonics and magmatism. American Geophysical Union, Washington, DCGoogle Scholar
  15. Chaulot-Talmon JF (1984) Geologic and structural study of the tertiary ignimbrites of the Sierra Madre Occidental between Hermosillo and Chihuahua, Mexico. Unpublished PhD Thesis, University of Paris Sud, Orsay, FranceGoogle Scholar
  16. Chavez RA, Iza RD (1975) Geologia de la Sierra de Peña Blanca:Internal report. I.N.E.N, MexicoGoogle Scholar
  17. Crowe DE, Vaughan RG (1996) Improved standardization techniques for laser microprobe δ34S (CDT) determination. Am Mineral 81:187–193Google Scholar
  18. Dobson PF, Fayek M, Goodell PC, Ghezzehei TA, Melchor F, Murell MT, Oliver R, Reyes-Cortes IA, Simmons A (2008) Stratigraphy of the PB-1 well, Nopal I uranium deposit, Sierra Peña Blanca, Chihuahua, Mexico. Int Geol Rev 50:959–974CrossRefGoogle Scholar
  19. Eaton GP (1982) The Basin and Range Province; Origin and tectonic significance. Annu Rev Earth Planet Sci 10:409–440CrossRefGoogle Scholar
  20. Ewing RC (1999) Less geology in the geological disposal of nuclear waste. Science 286:415–416CrossRefGoogle Scholar
  21. Fayek M, Kyser TK (1999) Stable isotope geochemistry of uranium deposits. In: Burns PC, Finch R (eds) Uranium: minerals, chemistry and the environment, vol 38. Reviews in Mineralogy, Washington, DC, pp 181–220Google Scholar
  22. Fayek M, Kyser TK (2000) Low temperature isotopic fractionation in the uraninite–UO3–CO2–H2O system. Geochim Cosmochim Acta 64:2185–2197CrossRefGoogle Scholar
  23. Fayek M, Harrison TM, Ewing RC, Grove M, Coath CD (2002) O and Pb isotopic analyses of uranium minerals by ion microprobe and U–Pb ages from the Cigar Lake Deposit. Chem Geol 185:205–225CrossRefGoogle Scholar
  24. Fayek M, Ren M, Goodell P, Dobson P, Saucedo AL, Kelts A, Utsunomiya S, Ewing RC, Riciputi LR, Reyes I (2006) Paragenesis and geochronology of the Nopal I uranium deposit, Mexico. 11th International High Level Radioactive Waste Management Conference Proc., Las Vegas, NV, pp. 55–62Google Scholar
  25. Ferrari L, Valencia-Moreno M, Bryan S (2007) Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geological Society of America Special Paper 422Google Scholar
  26. Finch RJ, Ewing RC (1992) Corrosion of uraninite under oxidizing conditions. J Nucl Mater 190:133–156CrossRefGoogle Scholar
  27. Gauthier-Lafaye F, Weber F (2003) Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Res 120:81–100CrossRefGoogle Scholar
  28. Goodell PC (1981) Geology of the Peña Blanca uranium deposits, Chihuahua, Mexico. In: Goodell PC, Waters A (eds) Uranium in volcanic and volcanoclastic rocks, vol 13. AAPG, El Paso, pp 275–291Google Scholar
  29. Goodell PC (1985) Chihuahua City Uranium Province, Chihuahua, Mexico. In: Uranium deposits in volcanic rocks. IAEA Proc. Tech Comm Meeting, El Paso, pp. 97–124Google Scholar
  30. Goodell PC, Trentham R, Carraway K (1979) Geologic setting of the Peña Blanca uranium deposits, Chihuahua, Mexico. In: Henry CD, Walton AD (eds) Formation of uranium ore by diagenesis of volcanic sediments. US Department of Energy, Washington, DC, Open-File Rept GJBX-22, v.79Google Scholar
  31. Goodell PC, Lueth VW, Peters L, Reyes-Cortes I (1999) Giant jarosite crystals from the Peña Blanca uranium district, Chihuahua, Mexico. Mineral Rec 30:85Google Scholar
  32. Henry CD, Aranda-Gomez JJ (1992) The real southern Basin and Range: mid- to late Cenozoic extension in Mexico. Geology 20:701–704CrossRefGoogle Scholar
  33. Henry CD, Price JG (1986) Early Basin and Range development in Trans-Pecos Texas and adjacent Chihuahua: magmatism and orientation, timing and style of extension. J Geophys Res 91:6213–6224CrossRefGoogle Scholar
  34. I.A.E.A. (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification, I.A.E.A.-TECDOC-1629, 120pp with CDGoogle Scholar
  35. IAEA/WMO (2006) Global network of isotopes in precipitation. The GNIP database. Accessible at: http://www.iaea.org/water. Accessed Feb 2012
  36. Ildefonse P, Muller JP, Clozel B, Calas G (1990) Study of two alteration systems as analogues of radionuclide release and migration. Eng Geol 29:413–439CrossRefGoogle Scholar
  37. Janeczek J, Ewing RC (1995) Mechanisms of lead release from uraninite in natural fission reactors in Gabon. Geochim Cosmochim Acta 59:1917–1931CrossRefGoogle Scholar
  38. Janeczek J, Ewing RC, Oversby VM, Werme LO (1996) Uraninite and UO2 in spent nuclear fuel: a comparison. J Nucl Mater 238:121–130CrossRefGoogle Scholar
  39. Keller GR, Cather SM (1994) Introduction. In: Keller GR, Cather SM (eds) Basins of the Rio Grande Rift: structure, stratigraphy, and tectonic setting. Geological Society of America, Boulder, pp 1–3, Special Paper 291Google Scholar
  40. Lexa J, Štohl J, Konečný V (1999) The Banská Štiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639–654CrossRefGoogle Scholar
  41. Lovley DR, Philips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. J Appl Environ Microbiol 58:850–856Google Scholar
  42. Lueth VW, Rye RO, Peters L (2005) “Sour gas” hydrothermal jarosite: ancient to modern acidsulfate mineralization in the southern Rio Grande Rift. Chem Geol 215:339–360CrossRefGoogle Scholar
  43. Magonthier MC (1987) Relations entre les minéralisations d’uranium de la Sierra Pefia Blanca (Mexique) et les ignimbrites porteuses. Bull Mineral 110:305–317Google Scholar
  44. McDowell FW, Clabaugh SE (1979) Ignimbrites of the Sierra Madre Occidental and their relation to the tectonic history of Western Mexico. Geol Soc Am Bull 180:113–124Google Scholar
  45. Min M, Xu H, Chen J, Fayek M (2005) Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geol Rev 26:187–197CrossRefGoogle Scholar
  46. Muller JP, Ildefonse P, Calas G (1990) Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays Clay Miner 38:600–608CrossRefGoogle Scholar
  47. Murphy WM (2000) Natural analogs and performance assessment for geologic disposal of nuclear waste. Mater Res Soc Symp Proc 608:533–544CrossRefGoogle Scholar
  48. Nieto-Samaniego AF, Ferrari L, Alaniz-Alvarez SA, Labarthe-Hernandez G, Rosas-Elguera J (1999) Variations in Cenozoic extension and volcanism across the southern Sierra Madre Occidental province, Mexico. Geol Soc Am Bull 111:347–363CrossRefGoogle Scholar
  49. Northrop HR, Goldhaber MB (1990) Genesis of the tabular-type vanadium uranium deposits of the Henry Basin, Utah. Econ Geol 85:215–216CrossRefGoogle Scholar
  50. Pearcy EC, Prikryl JD, Murphy WM, Leslie BW (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed US high-level nuclear waste repository at Yucca Mountain, Nevada. Appl Geochem 9:713–732CrossRefGoogle Scholar
  51. Pickett DA, Murphy WM (1997) Isotopic constraints on radionuclide transport at Peña Blanca. 7th EC Natural Analogue Working Group Meeting. In: Von Maravic H, Smellie J, (eds) EUR17851 European Commission, Luxembourg p. 113–122Google Scholar
  52. Prikryl JD, Picket DA, Murphy WM, Pearcy EC (1997) Migration behaviour of naturally occurring radionuclides at the Nopal I uranium deposit, Chihuahua, Mexico. J Contam Hydrol 26:61–69CrossRefGoogle Scholar
  53. Rees CE (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim Cosmochim Acta 37:1141–1162CrossRefGoogle Scholar
  54. Reyes-Cortés IA (1997) Geologic Studies in the Sierra de Peña Blanca, Chihuahua, Mexico. Unpublished PhD thesis, El Paso, University of Texas, p. 344 Google Scholar
  55. Reyes-Cortés M, Fuentes-Cobas L, Torres-Moye E, Esparza-Ponce H, Montero-Cabrera ME (2010) Uranium minerals from the San Marcos District, Chihuahua, Mexico. Miner Pet 99:121–132CrossRefGoogle Scholar
  56. Riciputi LR, Cole DR, Machel HG (1996) Sulfide formation in reservoir carbonates of the Devonian Nisku formation, Alberta, Canada: an ion microprobe study. Geochim Cosmochim Acta 60:325–336CrossRefGoogle Scholar
  57. Riciputi LR, Paterson BA, Ripperdan RL (1998) Measurement of light stable isotope ratios by SIMS: matrix effects for oxygen, carbon, and sulfur isotopes in minerals. Int J Mass Spectrom 178:81–112CrossRefGoogle Scholar
  58. Rosholt JN, Noble DC (1969) Loss of uranium from crystallized silicic volcanic rocks. Earth Planet Sci Lett 6:268–270CrossRefGoogle Scholar
  59. Saucedo A (2011) Geochronology of uranium minerals from the Nopal I uranium deposit, Chihuahua, Mexico. Unpublished, MSc thesis, University of ManitobaGoogle Scholar
  60. Seager WR, Shapiqullah M, Hawley JW, Marvin R (1984) New dates from basalts and the evolution of the southern Rio Grande Rift. Geol Soc Am Bull 95:87–99CrossRefGoogle Scholar
  61. Seal RR (2006) Sulfur isotope geochemistry of sulphide minerals. In: Vaughan DJ (ed) Sulfide mineralogy and geochemistry, vol 61. Mineralogical Society of America, Washington, DC, pp 633–677Google Scholar
  62. Sheppard SMF, Gilg HA (1996) Stable isotope geochemistry of clay minerals. Clay Miner 31:1–24CrossRefGoogle Scholar
  63. Southam G, Donald R, Rostad A, Brock C (2001) Pyrite discs in coal: evidence for fossilized bacterial colonies. Geology 29:47–50CrossRefGoogle Scholar
  64. Stege BR (1979) Stratigraphy and significance of the carbonates of the Peña Blanca Uranium District, Chihuahua, Mexico. MSc Thesis, Univ. Texas, El PasoGoogle Scholar
  65. Suzuki Y, Banfield JF (1999) The geomicrobiology of uranium. Rev Mineral 38:393–432Google Scholar
  66. Tardy M, Blanchet R, Zimmermann M (1989) Les lineaments du Texas et Caltam entre Cordillères Américaines et Sierras Madres mexicaines: nature, origin et évolution. Bull Cent Rech Explor Elf Aquitaine 13:219–227Google Scholar
  67. USGS (2004) Shuttle radar topography mission, global land cover facility. University of Maryland, College ParkGoogle Scholar
  68. Wenrich KJ, Modreski PJ, Zielinski ZA, Seeley JL (1982) Margaritasite: a new mineral of hydrothermal origin from the Peña Blanca Uranium district, Mexico. Am Mineral 67:1273–1289Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samuel Angiboust
    • 1
    • 2
  • Mostafa Fayek
    • 2
  • Ian M. Power
    • 3
  • Alfredo Camacho
    • 2
  • Georges Calas
    • 4
  • Gordon Southam
    • 3
  1. 1.Institut des Sciences de la Terre de Paris, UMR 7193 CNRSUniversité Pierre et Marie Curie-Paris 6ParisFrance
  2. 2.Department of Geological SciencesUniversity of ManitobaWinnipegCanada
  3. 3.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  4. 4.Institut de Minéralogie et de Physique des Milieux CondensésUniversité Pierre et Marie Curie-Paris 6, UMR CNRS 7590ParisFrance

Personalised recommendations