Advertisement

Mineralium Deposita

, Volume 46, Issue 4, pp 319–335 | Cite as

Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types

  • Céline Dupuis
  • Georges Beaudoin
Article

Abstract

Magnetite and hematite are common minerals in a range of mineral deposit types. These minerals form partial to complete solid solutions with magnetite, chromite, and spinel series, and ulvospinel as a result of divalent, trivalent, and tetravalent cation substitutions. Electron microprobe analyses of minor and trace elements in magnetite and hematite from a range of mineral deposit types (iron oxide-copper-gold (IOCG), Kiruna apatite–magnetite, banded iron formation (BIF), porphyry Cu, Fe-Cu skarn, Fe-Ti, V, Cr, Ni-Cu-PGE, Cu-Zn-Pb volcanogenic massive sulfide (VMS) and Archean Au-Cu porphyry and Opemiska Cu veins) show compositional differences that can be related to deposit types, and are used to construct discriminant diagrams that separate different styles of mineralization. The Ni + Cr vs. Si + Mg diagram can be used to isolate Ni-Cu-PGE, and Cr deposits from other deposit types. Similarly, the Al/(Zn + Ca) vs. Cu/(Si + Ca) diagram can be used to separate Cu-Zn-Pb VMS deposits from other deposit types. Samples plotting outside the Ni-Cu-PGE and Cu-Zn-Pb VMS fields are discriminated using the Ni/(Cr + Mn) vs. Ti + V or Ca + Al + Mn vs. Ti + V diagrams that discriminate for IOCG, Kiruna, porphyry Cu, BIF, skarn, Fe-Ti, and V deposits.

Keywords

Magnetite Hematite Mineral deposit Electron microprobe Mineral chemistry Discriminant diagram 

Notes

Acknowledgments

This research has been funded by the DIVEX research network, the Geological Survey of Canada and the Natural Science and Engineering Research Council of Canada Discovery Grant to GB. We would like to thank our colleagues in industry, government, and academia that have donated the samples used for this study: Doug Kirwin (Ivanhoe Mines Ltd.), Mark Cruise (Cardero Resources Corp.), Tim Fletcher (Barrick Gold UK Limited), Danielle Giovenezzo (formely Xstrata Nickel), Bruce Durham (Canadian Royalties Inc.), Peter Lightfoot (Vale), Gilles Roy (Xstrata Zinc), Patrice Roy (Géologie Québec), Louise Corriveau, Isabelle McMartin, Dorren E. Ames, Beth McClenaghan and Jan Peter (GSC), Marc Constantin, Éric David, Marjorie Simard (Université Laval), Michel Gauthier, Michel Jébrak and Renan Furic (UQAM), Olivier Côté-Mantha (UQAC), Jeremy P. Richards (University of Alberta), Meghan Jackson, Paul Jago and Janina Micko (University of British Columbia), Larry Meinert (Smith College), Jochen Kolb (RWTH Aachen University), Luis Fontboté, Aldo Bendezu, and Kalin Kouzmanov (Université de Genève), Khin Zaw (University of Tasmania). Marc Choquette has provided outstanding technical support with the microprobe analyses. Editor Patrick Williams and two anonymous reviewers provided numerous comments that improved significantly the paper.

References

  1. Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meney L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les Éditions du Physicien, Orsay, pp 323–347Google Scholar
  2. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302CrossRefGoogle Scholar
  3. Beaudoin G, Hébert R, Wang CS, Tang J (2005) Epithermal Au-Ag-Cu, porphyry Cu-(Au-Mo) and Cu-Au-Ag-Zn-Pb skarn deposits of the Gangdese Arc, Tibet. In: Mao J, Bierlein FP (eds) Eighth biennial SGA meeting: mineral deposit research: meeting the global challenge. Springer, Beijing, pp 1219–1222CrossRefGoogle Scholar
  4. Beaudoin G, Dupuis C, Gosselin P, Jébrak M (2007) Mineral chemistry of iron oxides: application to mineral exploration. In: Andrew CJ (ed) Ninth Biennial SGA meeting. SGA, Dublin, pp 497–500Google Scholar
  5. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace–element compositions and their relationship to host rock type. J Geochem Explor 76:45–69CrossRefGoogle Scholar
  6. Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357Google Scholar
  7. Carew MJ (2004) Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. Unpublished Ph.D. thesis, James Cook UniversityGoogle Scholar
  8. Cimon J (1973) Possibility of an Archean porphyry copper in Quebec. Can Min J 94:97Google Scholar
  9. Davidson GJ, Large RR (1994) Gold metallogeny and the copper–gold association of the Australian Proterozoic. Miner Deposita 29:208–223Google Scholar
  10. Deer WA, Howie RA, Zussman J (1992) An introduction to rock-forming minerals, 2nd edn. Longman, Harlow, Wiley, New YorkGoogle Scholar
  11. Diamandescu L, Mihaila-Tarabasanu D, Teodorescu V, Popescu-Pogrion N (1998) Hydrothermal synthesis and structural characterization of some substituted magnetites. Mater Lett 37:340–348CrossRefGoogle Scholar
  12. Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples. GSC Bull 423Google Scholar
  13. Fisher L, Kendrick M (2008) Metamorphic fluid origins in the Osborne Fe oxide-Cu-Au deposit, Australia: evidence from noble gases and halogens. Miner Deposita 43:483–497CrossRefGoogle Scholar
  14. Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. Econ Geol 100th Anniversary Vol:523–560.Google Scholar
  15. Fraser JF (1993) The Lac Troilus gold–copper deposit, Northwestern Quebec: a possible Archean porphyry system. Econ Geol 88:1685–1699CrossRefGoogle Scholar
  16. Furic R, Jébrak M (2005) Archean IOCG deposit in a fluidized dilational jog (Chibougamau, Abitibi, Canada). Geol Soc Amer Abstr Program 37:516Google Scholar
  17. Gosselin P, Beaudoin G, Jébrak M (2006) Application of the geochemical signature of iron oxides to mineral exploration. GAC-MAC Annual Meeting Prog Abs 31:CD-ROMGoogle Scholar
  18. Griffis AT (1979) An Archean “porphyry-type” disseminated copper deposit, Timmins, Ontario—a discussion. Econ Geol 74:695–696CrossRefGoogle Scholar
  19. Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sed Petrol 60:940–951Google Scholar
  20. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654Google Scholar
  21. Hall JM, Fischer JF (1977) Opaque mineralogy of basement rocks, Leg 37. Init Rep Deep Sea Drill Proj 37:857–873Google Scholar
  22. Heimann A, Spry PG, Teale GS (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a re-evaluation of gahnite composition as a guide in exploration. Can Miner 43:601–622CrossRefGoogle Scholar
  23. Helsel D (2005) Nondetects and data analysis. Wiley, New YorkGoogle Scholar
  24. Hitzman MW, Oreskes NO, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287CrossRefGoogle Scholar
  25. Hutton CO (1950) Studies of heavy detrital minerals. GSA Bull 61:635–713CrossRefGoogle Scholar
  26. Ilton ES, Eugster HP (1989) Base metal exchange between magnetite and a chloride-rich hydrothermal fluid. Geochim Cosmochim Acta 53:291–301CrossRefGoogle Scholar
  27. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47CrossRefGoogle Scholar
  28. Johnson HP (1979) Opaque mineralogy of the igneous rock samples from DSDP hole 395A. Init Rep Deep Sea Drill Proj 45:407–420Google Scholar
  29. Layton-Matthews D, Peter JM, Scott SD, Leybourne M (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada. Econ Geol 103:61–88CrossRefGoogle Scholar
  30. Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ (2010) Sediment-hosted lead–zinc deposits in Earth history. Econ Geol 105:593–625CrossRefGoogle Scholar
  31. Lee L, Helsel D (2007) Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modelling and hypothesis testing. Comput Geosci 33:696–704CrossRefGoogle Scholar
  32. Morton A, Yaxley G (2007) Detrital apatite geochemistry and its application in provenance studies. In: Arribas J, Critelli S, Johnsson MJ (eds) Geol Soc Amer Spec Paper 420:319–344Google Scholar
  33. Nadoll P, Mauk JL, Hayes, TS, Koenig AE, Hofstra AH, Box SE (2009) Geochemistry of magnetite from hydrothermal ore deposits and their host rocks in the Proterozoic Belt Supergroup, USA. In: Williams et al. (eds) Smart science for exploration and mining, Proc 10th Biennial Meeting, Townsville, pp 129–131Google Scholar
  34. Nielsen RL, Beard JS (2000) Magnetite-melt HFSE partitioning. Chem Geol 164:21–34Google Scholar
  35. Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2010) Mechanisms of iron oxide transformations in hydrothermal systems. Geochim Cosmochim Acta 74:6141–6156CrossRefGoogle Scholar
  36. Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone (2nd ed.), Springer, New York, pp 553Google Scholar
  37. Pilote P, Guha J (1998) Métallogénie de l’extrémité est de la sous-province de l’Abitibi. In: Pilote (ed) Géologie et métallogénie du district minier de Chapais-Chibougamau; nouvelle vision du potentiel de découverte, DV 98-03, MNRF Québec, Canada, pp 29–44Google Scholar
  38. Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon, New YorkGoogle Scholar
  39. Razjigaeva NG, Naumova VV (1992) Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study. J Sed Petrol 62:802–809Google Scholar
  40. Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Miner 46:879–900CrossRefGoogle Scholar
  41. Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chem Geol 227:1–25CrossRefGoogle Scholar
  42. Ronacher E, Richards JP, Reed MH, Bray CJ, Spooner ETC, Adams PD (2004) Characteristics and evolution of the hydrothermal fluid in the North zone high-grade area, Porgera gold deposit, Papua New Guinea. Econ Geol 99:843–867CrossRefGoogle Scholar
  43. Rusk B, Oliver N, Brown A, Lilly R, Jungmann D (2009) Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. In: Williams et al. (eds) Smart science for exploration and mining, Proc 10th Biennial Meeting, Townsville, pp 656–658Google Scholar
  44. Sack RO, Ghiorso MS (1991) An internally consistent model for the thermodynamic properties of Fe − Mg-titanomagnetite-aluminate spinels. Contrib Mineral Petrol 106:474–505CrossRefGoogle Scholar
  45. Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite–ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185CrossRefGoogle Scholar
  46. Scheka SA, Platkov AV, Vezhosek AA, Levashov GB, Oktyabrsky RA (1980) The trace element paragenesis of magnetite. Nauka, Moscow, p 147Google Scholar
  47. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41CrossRefGoogle Scholar
  48. Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. SEG Keystone Conference, Denver, USA: CD-ROMGoogle Scholar
  49. Smith MP (2007) Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Innner Mongolia, China: contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos 93:126–148CrossRefGoogle Scholar
  50. Spry PG, Scott SD (1986) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Econ Geol 81:1446–1463CrossRefGoogle Scholar
  51. Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37CrossRefGoogle Scholar
  52. Walters SG, Skrzeczynski R, Whiting T, Bunting F, Arnold G (2002) Discovery and geology of the Cannington Ag-Pb-Zn deposit, Mount Isa Eastern Succession, Australia: development and application of an exploration model for Broken Hill-type deposits. Soc Econ Geol Spec Publ 9:95–118Google Scholar
  53. Wang Q, Wu A, Yu L, Liu Z, Xu W, Yang H (2009) Nanocomposites of iron-cobalt alloy and magnetite: controllable solvothermal synthesis and their magnetic properties. J Phys Chem C 113:19875–19882CrossRefGoogle Scholar
  54. Williams PJ (1994) Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: implications for the origin of ironstone-hosted Au-Cu deposits. Miner Deposita 29:250–260CrossRefGoogle Scholar
  55. Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space–time distribution, and possible modes of origin. Econ Geol 100th Anniversary Vol: 371–405Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Département de géologie et de génie géologiqueUniversité LavalQuébec (QC)Canada

Personalised recommendations