Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Paleomagnetism of the Cu–Zn–Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen, Germany

Abstract

Syngenetic, diagenetic and epigenetic models have been proposed for the Cu–Zn–Pb Kupferschiefer mineralization at Sangerhausen, Germany. Paleomagnetic and rock magnetic measurements have been made on 205 specimens from mine workings on the margin of the Sangerhausen Syncline. The mineralization is richest in the ∼0.5-m-thick Upper Permian (258 ± 2 Ma) Kupferschiefer black marly shale (nine sites) and dies out over ∼0.2 m in the underlying Weisliegend sandstones (three sites) and overlying Zechstein carbonates (two sites). Except for one site of fault zone gypsum, characteristic remanent magnetization directions were isolated for all 14 sites using alternating field and thermal step demagnetization. These directions provide a negative fold test, indicating that the remanence postdates Jurassic fault block tilting. Rock magnetic measurements show that the Kupferschiefer shale marks a redox front between the oxidized Weissliegend sandstones and non-oxidized Zechstein carbonates. The 14 site directions give a Late Jurassic paleopole at 149 ± 3 Ma. It is significantly different from the paleopole reported by E.C. Jowett and others for primary or early diagenetic Rote Fäule alteration that gives an age of 254 ± 6 Ma on the current apparent polar wander path and is associated with Kupferschiefer mineralization. We suggest that the Late Jurassic extensional tectonic event that formed the nearby North German Basin also reactivated Variscan basement faults and extended them up through the overlying strata, thereby allowing hydrothermal basement fluids to ascend and epigenetically mineralize the Kupferschiefer shale. The possibility of a 53 ± 3 Ma mineralization age is also considered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Bachmann GH, Schwab M (2008) Regionalgeologische Entwicklung. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (eds) Geologie von Sachsen-Anhalt. E. Schweitzbart’sche Verlagsbuchhandlung, Stuttgart, pp 25–34

  2. Bechtel A, Elliott WC, Oszczepalski S (1996) Indirect age determination of Kuperfschiefer-type mineralization in the Polish Basin by K/Ar dating of illite: preliminary results. Econ Geol 91:1310–1319

  3. Bechtel A, Elliott WC, Wampler JM, Oszczepalski S (1999) Clay mineralogy, crystallinity, and K–Ar ages of illites within the Polish Zechstein Basin: implications for the age of Kupferschiefer mineralization. Econ Geol 94:261–272

  4. Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res 107(B11):1–31

  5. Blundell DJ, Alderton DHM, Karnkowski PH, Oszczepalski S, Kucha H (2003) Copper mineralization of the Polish Kupferschiefer: a proposed basement fault–fracture system of fluid flow. Econ Geol 98:1487–1495

  6. Boness M, Haack U, Feldmann KH (1990) Rb/Sr Datierung der hydrothermalen Pb–Zn Vererzung von Bad Grund (Harz), BRD. Chem Erde 50:1–25

  7. Brauns CM, Pätzold T, Haack U (2003) A Re–Os study bearing on the age of the Kupferschiefer mineralization at Sangerhausen. Abstracts, XVth International Congress of Carboniferous and Permian Stratigraphy, Utrecht, p 66

  8. Brongersma-Sanders M (1965) Metals of the Kupferschiefer supplied by normal seawater. Geol Rundsch 55:365–375

  9. Creaser RA (2003) A review of the Re–Os isotope system with application to organic-rich sedimentary rocks. In: Lentz DR (ed) Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments. Geological Association of Canada, Geotext 4, pp 79–83

  10. DEKORP-BASIN Research Group (1999) Deep crustal structure of the Northeast German basin: new DEKORP-BASIN ’96 deep-profiling results. Geology 27:55–58

  11. Ehling BC, Gebhardt U, Kampe A (2008) Rotliegend. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (eds) Geologie von Sachsen-Anhalt. E. Schweitzbart’sche Verlagsbuchhandlung, Stuttgart, pp 143–160

  12. Emmermann R (1998) Das deutsche kontinentale Tiefbohrprogramm: ein Vorstoss in die Erdkruste. Akad J 1:17–27

  13. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A217:295–305

  14. Franzke HJ, Zerjadtke W (1993) Structural control of hydrothermal vein mineralizations in the Lower Harz Mountains. Monogra Ser Mineral Deposits 30:13–33

  15. Glennie KW, Buller AT (1983) The Permian Weissliegend of NW Europe: the partial deformation of aeolian dune sands caused by the Zechstein transgression. Sediment Geol 35:43–81

  16. Goll M, Lippolt HJ, Obert C, Schwarz W (1998) Datierungen zum permokarbonen Magmatismus des Harzes-erste K–Ar-Ergebnisse. Terra Nostra 2(98):62–65

  17. Graham JW (1949) The stability and significance of magnetism in sedimentary rocks. J Geophys Res 54:131–167

  18. Gustafson LB, Williams N (1981) Sediment-hosted stratiform deposits of copper, lead, and zinc. Economic Geology 75th Anniversary Volume, pp 139–178

  19. Haack U (1993) Critical note on lead–lead model ages. Monogra Ser Mineral Deposits 30:115–116

  20. Haack U, Lauterjung J (1993) Rb/Sr dating of hydrothermal overprint in Bad Grund by mixing lines. Monogra Ser Mineral Deposits 30:103–113

  21. Hagedorn B, Lippolt HJ (1993) Isotopic age constraints for epigenetic mineralization in the Harz Mountains (Germany) from K–Ar, 40Ar/39Ar and Rb–Sr data of authigenic K-feldspars. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits—a case study of the Pb–Zn, barite and fluorite deposits of the Harz Mountains. Monogra Ser Mineral Deposits 30, pp 87–102

  22. Hammer J, Hengst M, Pilot J, Rösler HJ (1987) Pb-Isotopenverhältnisse des Kupferschiefers der Sangerhauser Mulde: Neue Untersuchungscrgebnise. Chem Erde 46:193–211

  23. Hammer J, Junge F, Roesler HJ, Niese S, Gleisberg B, Stiehl G (1990) Element and isotope geochemical investigations of the Kupferschiefer in the vicinity of “Rote Fäule”, indicating copper mineralization (Sangerhausen Basin, G.D.R.). Chem Geol 85:345–360

  24. Hautmann S, Brander T, Lippolt H, Lorenz J (1999) K–Ar and (U+Th)–He chronometry of multistage alteration and mineralisation in the Hartkoppe Rhyolite, Spessart, Germany. J Conf Abstr 4:769

  25. Jankowski G (1995) Zur Geschichte des Mansfelder Kupferschieferbergbaus. GDMB-Informationsgesellschaft, Clausthal-Zellerfeld, p 366

  26. Jowett EC (1986) Genesis of Kupferschiefer Cu–Ag deposits by convective flow of Rotliegendes brines during Triassic rifting. Econ Geol 81:1823–1837

  27. Jowett EC, Pearce GW, Rydzewski A (1987a) A mid-Triassic paleomagnetic age of the Kupferschiefer mineralization in Poland, based on a revised apparent polar wander path for Europe and Russia. J Geophys Res 92:581–598

  28. Jowett EC, Rydzewski A, Jowett RJ (1987b) The Kupferschiefer Cu–Ag ore deposits in Poland: a re-appraisal of the evidence of their origin and presentation of a new genetic model. Can J Earth Sci 24:2016–2037

  29. Jung W, Knitzschke G (1976) Kupferschiefer in German Democratic Republic (GDR) with special reference to the Kupferschiefer deposits of the southeast Harz Foreland. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 6. Elsevier, Amsterdam, pp 353–406

  30. Kawasaki K, Symons DTA, Dawborn T (2010) Paleomagnetism of the world-class Century Zn–Pb–Ag deposits, Australia. J Geochem Explor 106:137–145. doi:10.1016/j.gexplo.2009.12.001

  31. Kirschvink JL (1980) The least squares line and plane and the analysis of paleomagnetic data. Geophys J Roy Astr Soc 62:699–718

  32. Kucha H (1990) Geochemistry of Kupferschiefer, Poland. Geol Rundsch 79:387–399

  33. Kucha H, Pawlikowski M (1986) Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland. Miner Deposita 21:70–80

  34. Laubscher H (2004) The southern Rhine graben: a new view of the initial phase. Int J Earth Sci (Geol Rundsch) 93:341–347

  35. Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead–zinc deposits: a global perspective. Economic Geology 100th Anniversary Special Paper, pp 561–607

  36. Lévêque J, Haack U (1993) Pb isotopes of hydrothermal ores in the Harz. Monogra Ser Mineral Deposits 30:197–210

  37. Lewchuk MT, Leach DL, Kelley KD, Symons DTA (2004) Paleomagnetism of the Red Dog Zn–Pb massive sulfide deposit in northern Alaska. Econ Geol 99:1555–1567

  38. Lüders V, Gerler J, Hein UF, Reutel CHR (1993) Chemical and thermal development of ore-forming solutions in the Harz Mountains: a summary of fluid inclusion studies. Monogra Ser Mineral Deposits 30:117–132

  39. Maliszewska A, Kuberska M (2009) O badaniach izotopowych diagenetycznego illitu z piaskowców czerwonego spągowca Wielkopolski i Pomorza Zachodniego. Przegląd Geologiczny 57:322–327

  40. Maliszewska A, Kuberska M, Such P, Leśniak G (1998) Ewolucja przestrzeni porowej utworow czerwonego spagowca. Prace Państwowego Instytutu Geologicznego CLXY, pp 177–194

  41. Marowsky G (1969) Schwefel-Kohlenstoff und Sauerstoff Isotopen untersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung, Contr. Mineral Petrol 22:290–334

  42. McFadden PL, Lowes FJ (1981) The discrimination of mean directions drawn from Fisher distributions. Geophys J Roy Astr Soc 67:19–33

  43. Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrated time analysis. In: Scholle PA, Peryt TM, Ulmer-Scholle DS (eds) The Permian and Northern Pangea. Springer, Heidelberg, pp 77–97

  44. Menning M, Alekseev AS, Chuvashov BI, Davydov VI, Devuyst FX, Forke HC, Grunt TA, Hance L, Heckel PH, Izokh NG, Jin YG, Jones PJ, Kotlyar GV, Kozur HW, Nemyrovska TI, Schneider JW, Wang XD, Weddige K, Weyer D, Work DM (2006) Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003). Palaeogeog Palaeoclim Palaeoecol 240:318–372

  45. Merrill RT, McElhinny MW (1983) The earth’s magnetic field: its history origin and planetary perspective. Academic, London, p 401

  46. Mertz DF, Lippolt HJ, Schnorrer-Köhler G (1989) Early Cretaceous mineralizing activity in the St. Andreasberg ore district (Southwest Harz, Federal Republic of Germany). Miner Deposita 24:9–13

  47. Michalik M (1997) Chlorine containing illites, copper chlorides and other chlorine bearing minerals in the Fore-Sudetic copper deposit (Poland). In: Papumen H (ed) Mineral deposits. Balkema, Rotterdam, pp 543–546

  48. Moreau MG, Ader M, Enkin RJ (2005) The magnetization of clay-rich rocks in sedimentary basins: low-temperature experimental formation of magnetic carriers in natural samples. Earth Planet Sci Lett 230:193–210

  49. Muchez P, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27:241–267

  50. Nawrocki J (1997) Permian to Early Triassic magnetostratigraphy from the Central European Basin in Poland: implications on regional and worldwide correlations. Earth Planet Sci Lett 152:37–58

  51. Nawrocki J (2000) Clay mineralogy, crystallinity, and K–Ar ages of illites within the Polish Zechstein Basin: implications for the age of Kupferschiefer mineralization—a discussion. Econ Geol 95:241–242

  52. Ogg JG, Ogg G, Gradstein FM (2008) The concise geologic time scale. Cambridge University Press, Cambridge, 177 pp

  53. Okrusch M, Lorenz JA, Weyer S (2007) The genesis of sulfide assemblages in the former Wilhelmine mine, Spessart, Bavaria, Germany. Can Mineral 45:723–750

  54. Oszczepalski S (1989) Kupferschiefer in southwestern Poland: sedimentary environments, metal zoning, and ore controls. In: Boyle RW et al. (eds) Sediment-hosted stratiform copper deposits. Geological Association of Canada Special Paper, pp 571–600

  55. Oszczepalski S (1999) Origin of the Kupferschiefer polymetallic mineralization in Poland. Miner Deposita 34:599–613

  56. Oszczepalski S, Blundell D (2005) Kupferschiefer copper deposits of SW Poland Lubin-Sieroszowice District: Lat. 51°35′ N, Long. 16°6′ E. Ore Geol Rev 27:271–271

  57. Pašava J, Vymazalová A, Mao J, Du A, Qu W, Korzekwa W (2007a) A Re–Os study of noble metal-rich black shales from the Polish Kupferschiefer. Proceedings of the Ninth Biennial SGA Meeting, pp 221–224

  58. Pašava J, Vymazalová A, Qu W, Korzekwa W (2007b) Re–Os study of the Polish Kupferschiefer; implications for source and timing of metal enrichment. Geochim Cosmochim Acta 71:A763

  59. Pašava J, Oszczepalski S, Du A (2010) Re–Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Miner Deposita 45:189–199

  60. Pätzold T, Brauns CM, Haack U (2002) A Re–Os study bearing on the age of Kupferschiefer mineralization at Mansfeld (Germany). Abstract Symposium “Highly siderophile elements in terrestrial and meteoritic samples: implications for planetary differentiation and igneous processes”, Nancy, August 26–28

  61. Paul J (2006) Der Kupferschiefer: lithologie, stratigraphie. Fazies und Metallogenese eines Schwarzschiefers. Z dt Ges Geowiss 157(1):57–76

  62. Pollastro RM (1993) Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner 41:119–133

  63. Pompecky JF (1914) Das Meer des Kupferschiefers. Zeitschrift der Deutschen Geologischen Gesellschaft, Branca-Festschrift, Gebrüder Bornträger, Leipzig, pp 444–494

  64. Radzinski KH, Ehling CB, Kunert R, Beutler G (2008) Südöstliches Harzvorland. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (eds) Geologie von Sachsen-Anhalt. E. Schweitzbart’sche Verlagsbuchhandlung, Stuttgart, pp 458–471

  65. Ravizza G, Turekian KK (1989) Application of the 187Re–187Os system to black shale geochronometry. Geochimica et Cosmochim Acta 53:3257–3262

  66. Rentzsch J (1974) The Kupferschiefer in comparison with the deposits of the Zambian Copper belt. In: Bartholome P (ed) Centenaire de la societe geologique de Belgique, Gisements stratiforms et provinces Cupriferes. Belgian Geological Society, pp 395–418

  67. Rentzsch J (1991) Die Rote-Fäule-Fazies als wichtigster erzkontrollierender Faktor der Vererzung des Typs Kupferschiefer. Zentalblatt Geologie und Palaontologie Teil 1:945–956

  68. Rentzsch J, Franzke HJ (1997) Regional tectonic control of the Kupferschiefer mineralization in Central Europe. Zeitschrift für Geologische Wissenschaften 25:121–139

  69. Rentzsch J, Knitzschke G (1968) Die erzmineralparagenesen des Kupferschiefers und ihre regionale Verbreitung. Freiberger Forschungshefte C231:189–211

  70. Rospondek MJ, de Leeuw JW, Baas M, van Bergen PF, Leereveld H (1994) The role of organically bound sulphur in stratiform ore sulphide deposits. Organic Geochem 21:1181–1191

  71. Rydzewski A (1978) Oxidized facies of copper bearing Zechstein shales in the Fore-Sudetic Monocline. Prezeglad Geologiczny 26:102–108

  72. Schneider J, Haack U, Stedingk K (2003) Rb–Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines. Geochim Cosmochim Acta 67:1803–1819

  73. Schwab M, Ehling B (2008) Karbon. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (eds) Geologie von Sachsen-Anhalt. E. Schweitzbart’sche Verlagsbuchhandlung, Stuttgart, pp 110–140

  74. Slowakiewicz M, Kiersnowski H, Wanger R (2009) Correlation of the Upper Permian marine and terrestrial sedimentary sequences in Polish, German, and USA Western Interior Basins with reference to global time markers. Palaeoworld 18:193–211

  75. Stedingk K, Rentzsch J, Knitzschke G, Schenke G, Heinrich K, Schefler H (2002) Potenziale der Erze und Spate in Sachsen-Anhalt. Rohstoffbericht 2002, Mitt. Geol. Sachsen-Anhalt. LAGB Sachsen-Anhalt Beiheft 5:75–131

  76. Stollhofen H, Bachmann GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to Early Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin System, pp 181–210

  77. Sun Y, Püttmann W (1997) Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany. Appl Geochem 12:577–592

  78. Symons DTA (2007) Paleomagnetism of the HYC Zn–Pb SEDEX deposit, Australia: evidence of an epigenetic origin. Econ Geol 102:1295–1310

  79. Thomson SN (2001) Using apatite fission-track thermochronology to investigate Late Cretaceous tectonic inversion of the Variscan basement blocks of central Germany: examples from the Harz Mountains and Thüringer Wald. Exkursionsführer Veröff Ges Geowiss 214:223–224

  80. Tischendorf G, Bielicki KH, Franzke HJ (1993) On the genesis of Permian and post-Permian hydrothermal mineralizations in the Harz mountains according to new Pb-isotope measurements. Monogra Ser Mineral Deposits 30:65–76

  81. Torsvik TH, Van der Voo R, Meert JG, Mosar J, Walderhaug HJ (2001) Reconstructions of the continents around the North Atlantic at about the 60th parallel. Earth Planet Sci Lett 187:55–69

  82. Vaughan DJ, Sweeney MA, Friedrich G, Diedel R, Haranczyk C (1989) The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Econ Geol 84:1003–1027

  83. von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci 97:1315–1330

  84. Wagner T, Schneider J (2002) Lead isotope systematics of vein-type antimony mineralization, Rheinisches Schiefergebirge, Germany: a case history of complex reaction and remobilization processes. Miner Deposita 37:185–197

  85. Wagner T, Okrusch M, Weyer S, Lorenz J, Lahaye Y, Taubald H, Schmitt RT (2010) The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Miner Deposita 45:217–239

  86. Walther S, Borg G, Kopp J (2007) The significance of footwall and hanging wall ore in the German Kupferschiefer of Richelsdorf and Spremberg/Weisswasser. Proceedings of the Ninth Biennial SGA Meeting, Dublin, pp 229–232

  87. Watson GS, Enkin RJ (1993) The fold test in paleomagnetism as a parameter estimation problem. Geophys Res Lett 20:2135–2137

  88. Wedepohl KH (1971) “Kupferschiefer” as a prototype of syngenetic sedimentary ore deposits. Society of Mining Geology, Japan, IMA-IMAGOD Special Issue 3, pp 263–273

  89. Wedepohl KH, Rentzsch J (2006) The composition of brines in the early diagenetic mineralization of the Permian Kupferschiefer in Germany. Contrib Mineral Petrol 152:323–333

  90. Wedepohl KH, Delevaux MH, Doe BR (1978) The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany. Contrib Mineral Petrol 65:273–281

  91. Wodzicki A, Piestrzynski A (1994) An ore genetic model for the Lubin–Sieroszowice mining district, Poland. Miner Deposita 29:30–43

  92. Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell International Petroleum Maatschappij B.V., The Hague, 239 pp

  93. Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in palaeomagnetism. Elsevier, Amsterdam, pp 254–286

Download references

Acknowledgements

The staff of the Röhrig Shaft visitors mine is gratefully acknowledged for helping with access to the various sampling sites underground. The authors thank Shiho Kawasaki for her help in preparing and measuring the samples. This manuscript has profited significantly from the review of an earlier version and from regional geological input by Gerhard Bachmann, which is gratefully acknowledged. We also thank the Natural Sciences and Engineering Research Council of Canada for funding this study through a Discovery Grant to D.T.A.S.

Author information

Correspondence to David T. A. Symons.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Symons, D.T.A., Kawasaki, K., Walther, S. et al. Paleomagnetism of the Cu–Zn–Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen, Germany. Miner Deposita 46, 137–152 (2011). https://doi.org/10.1007/s00126-010-0319-2

Download citation

Keywords

  • Eastern Germany
  • Geochronology
  • Kupferschiefer ore
  • Paleomagnetism
  • Sangerhausen mining district