Advertisement

Mineralium Deposita

, Volume 45, Issue 7, pp 621–629 | Cite as

Geodynamic and climate controls in the formation of Mio–Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo

  • Sophie Decrée
  • Étienne Deloule
  • Gilles Ruffet
  • Stijn Dewaele
  • Florias Mees
  • Christian Marignac
  • Johan Yans
  • Thierry De Putter
Letter

Abstract

The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar–Ar analyses of oxidized Mn ore and in situ U–Pb SIMS measurements of heterogenite yield Mio–Pliocene ages. The Ar–Ar ages suggest a multi-phase process, starting in the Late Miocene (10–5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7–2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.

Keywords

Heterogenite Katanga Copperbelt Lateritic ore Supergene Congo 

Notes

Acknowledgments

This study is part of the GECO project (Belgian Federal Public Service for Foreign Affairs) and the TRACE project (Belgian Federal Science Policy Office). Jacky Cailteux (EGMF) provided easy access to the Luiswishi quarry, as well as stimulating comments and discussion. A. Bernard and L. Fontaine are thanked for their contribution to the study of the Kisenge deposit. The authors are indebted to Bernd Lehmann for his constructive and helpful editorial handling of the manuscript.

Supplementary material

126_2010_305_MOESM1_ESM.doc (42 kb)
ESM 1 (DOC 42 kb)

References

  1. Alexandre J (2002) Les cuirasses latéritiques et autres formations ferrugineuses tropicales Exemple du Haut Katanga méridional. Annales du Musée Royal de l’Afrique Centrale, Sciences Géologiques 107:118Google Scholar
  2. Beauvais A, Ruffet G, Colin F, Hénocque O (2008) Chemical and physical erosion rhythms of the West African Cenozoic morphogenesis: 39Ar-40Ar dating of supergene K-Mn oxides. J Geophys Res 113(F04007):15Google Scholar
  3. Boni M, Terracciano R, Evans NJ, Laukamp C, Schneider J, Bechstäd T (2007) Genesis of vanadium ores in the Otavi Mountainland, Namibia. Econ Geol 102:441–469CrossRefGoogle Scholar
  4. Brown AC (2005) Refinements for footwall red-bed diagenesis in the sediment-hosted stratiform copper deposits models. Econ Geol 100:765–771CrossRefGoogle Scholar
  5. Buffard R (1984) Séries carbonatées, karsts et formes spéléologiques du Shaba. République du Zaïre. Karstologia 4:50–55Google Scholar
  6. Cailteux J, Kampunzu A, Lerouge C, Kaputo A, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158CrossRefGoogle Scholar
  7. Chivot J, Mendoza L, Mansour C, Pauporte T, Cassir M (2008) New insight in the behaviour of Co–H2O system at 25–150°C, based on revised Pourbaix diagrams. Corrosion Sci 50:62–69CrossRefGoogle Scholar
  8. Colin F, Beauvais A, Ruffet G, Hénocque O (2005) First 40Ar/39Ar geochronology of lateritic manganiferous pisolites: Implications for the Palaeogene history of a West African landscape. Earth Planet Sci Lett 238:172–188CrossRefGoogle Scholar
  9. De Putter Th, Decrée S, Dewaele S, Mees F (2010) Katanga malachite, an indicator of a major Pliocene Cu remobilization process in karstic environment. Ore Geol Rev (in press)Google Scholar
  10. Deliens M (1974) Les Oxydes Hydrates de Cobalt du Shaba Méridional. Annales du Musée Royal de l’Afrique Centrale, Sciences Géologiques 76:80Google Scholar
  11. Desouky HE, Muchez Ph, Cailteux J (2009) Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geol Rev 36:315–332CrossRefGoogle Scholar
  12. Dewaele S, Muchez Ph, Heijlen W, Boutwood A, Lemmon T, Tyler R (2006) Reconstruction of the hydrothermal history of the Cu-Ag vein-type mineralization at Dikulushi, Kundelungu foreland, Katanga, D.R. Congo. J Geochem Explor 89:376–379CrossRefGoogle Scholar
  13. Doyen L (1973) The manganese ore deposit of Kisenge-Kamata (Western Katanga). Mineralogical and sedimentological aspects of the primary ore. In: Amstutz GC, Bernard AJ (eds) Ores in Sediments. Heidelberg, Springer-Verlag, pp 93–100Google Scholar
  14. Gasse F (2006) Climate and hydrological changes in tropical Africa during the past million years. C R Aca Sci Palevol 5:35–43CrossRefGoogle Scholar
  15. Giresse P (2005) Mesozoic-Cenozoic history of the Congo Basin. J Afr Earth Sci 43:301–315CrossRefGoogle Scholar
  16. Haest M, Muchez P, Dewaele S, Franey N, Tyler R (2007) Structural control on the Dikulushi Cu–Ag deposit, Katanga, Democratic Republic of Congo. Econ Geol 102:1321–1333CrossRefGoogle Scholar
  17. Haest M, Muchez P, Dewaele S, Schneider J, Boyce AJ (2009) Petrographic, fluid inclusion and isotope study of the Dikulushi Cu–Ag deposit, Katanga (D.R.C.): implications for exploration. Miner Deposita 44:505–522CrossRefGoogle Scholar
  18. Haest M, Schneider J, Cloquet Ch, Latruwe K, Vanhaeke F, Muchez Ph (2010) Pb isotopic constraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralization, Kundelungu Plateau (Democratic Republic of Congo). Miner Deposita 45:393–410CrossRefGoogle Scholar
  19. Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D (2005) The sediment-hosted stratiform copper ore system. Econ Geol 100th Anniversary Volume, Society of Econ Geol, Tulsa, Oklahoma. pp 609–642Google Scholar
  20. Kampunzu AB, Cailteux JLH, Kamona AF, Intiomale MM, Melcher F (2009) Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt. Ore Geol Rev 35:263–297CrossRefGoogle Scholar
  21. Lavier LL, Steckler MS, Brigaud F (2001) Climatic and tectonic control on the Cenozoic evolution of the West African margin. Marine Geol 178:63–80CrossRefGoogle Scholar
  22. Lepersonne J (1974) Carte géologique du Zaïre. Institut Géographique Militaire, Bruxelles, scale 1: 2 000 000, 1 sheetGoogle Scholar
  23. Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn ± Pb massive sulphide deposits. Appl Geochem 15:695–723CrossRefGoogle Scholar
  24. Muchez Ph, Vanderhaegen P, El Desouky H, Schneider J, Boyce A, Dewaele S, Cailteux J (2008) Anhydrites pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Coppperbelt (Democratic Republic of Congo). Miner Deposita 43:575–589CrossRefGoogle Scholar
  25. National Materials Advisory Board (1981) Manganese Reserves and Resources of the World and Their Industrial Implications, NMAB-374th edn. National Academy of Sciences, Washington DC, p 334Google Scholar
  26. Ngongo K (1975) Sur la similitude entre les gisements uranifères (type Shinkolobwe) et les gisements cuprifères (type Kamoto) au Shaba, Zaïre. Ann Soc Geol Belg 98:449–462Google Scholar
  27. Pack A, Gutzmer J, Beukes NJ, van Niekerk HS, Hoernes S (2000) Supergene ferromanganese wad deposits derived from Permian Karoo strata along the Late Cretaceous–Mid-Tertiary African land surface, Ryedale, South Africa. Econ Geol 95:203–220Google Scholar
  28. Placet J (1991) Kolwezi et la Katanguien, Observations et Synthèses structurales. Unpublished Ph.D. Dissertation, Ecole Nationale Supérieure de Géologie de Nancy. p. 462Google Scholar
  29. Rose AW (1989) Mobility of copper and other heavy metals in sedimentary environments. Geol Assoc Can Spec Paper 36:97–110Google Scholar
  30. Steiger H, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  31. Steven NM (2000) A Shaba-type Cu-Co(-Ni) Deposit at Luamata, West of the Kabompo Dome, Northwestern Zambia. Explor Min Geol 9:277–287CrossRefGoogle Scholar
  32. Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, p 312Google Scholar
  33. USGS (2009) Mineral Commodity Summaries 2009. USGS, St. Louis, MO. p. 195Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sophie Decrée
    • 1
    • 6
  • Étienne Deloule
    • 2
  • Gilles Ruffet
    • 3
    • 4
  • Stijn Dewaele
    • 1
  • Florias Mees
    • 1
  • Christian Marignac
    • 5
  • Johan Yans
    • 6
  • Thierry De Putter
    • 1
  1. 1.Royal Museum for Central AfricaTervurenBelgium
  2. 2.Centre de Recherches Pétrographiques et Géochimiques (CNRS)NancyFrance
  3. 3.CNRS (CNRS/INSU) UMR 6118, Géosciences RennesRennes CedexFrance
  4. 4.Université de Rennes 1, Géosciences RennesRennes CedexFrance
  5. 5.Ecole Nationale Supérieure des Mines de NancyNancyFrance
  6. 6.Facultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations