Mineralium Deposita

, Volume 45, Issue 8, pp 735–763 | Cite as

Genesis of sediment-hosted stratiform copper–cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo)

  • Hamdy A. El Desouky
  • Philippe Muchez
  • Adrian J. Boyce
  • Jens Schneider
  • Jacques L. H. Cailteux
  • Stijn Dewaele
  • Albrecht von Quadt


The sediment-hosted stratiform Cu–Co mineralization of the Luiswishi and Kamoto deposits in the Katangan Copperbelt is hosted by the Neoproterozoic Mines Subgroup. Two main hypogene Cu–Co sulfide mineralization stages and associated gangue minerals (dolomite and quartz) are distinguished. The first is an early diagenetic, typical stratiform mineralization with fine-grained minerals, whereas the second is a multistage syn-orogenic stratiform to stratabound mineralization with coarse-grained minerals. For both stages, the main hypogene Cu–Co sulfide minerals are chalcopyrite, bornite, carrollite, and chalcocite. These minerals are in many places replaced by supergene sulfides (e.g., digenite and covellite), especially near the surface, and are completely oxidized in the weathered superficial zone and in surface outcrops, with malachite, heterogenite, chrysocolla, and azurite as the main oxidation products. The hypogene sulfides of the first Cu–Co stage display δ34S values (−10.3‰ to +3.1‰ Vienna Canyon Diablo Troilite (V-CDT)), which partly overlap with the δ34S signature of framboidal pyrites (−28.7‰ to 4.2‰ V-CDT) and have ∆34SSO4-Sulfides in the range of 14.4‰ to 27.8‰. This fractionation is consistent with bacterial sulfate reduction (BSR). The hypogene sulfides of the second Cu–Co stage display δ34S signatures that are either similar (−13.1‰ to +5.2‰ V-CDT) to the δ34S values of the sulfides of the first Cu–Co stage or comparable (+18.6‰ to +21.0‰ V-CDT) to the δ34S of Neoproterozoic seawater. This indicates that the sulfides of the second stage obtained their sulfur by both remobilization from early diagenetic sulfides and from thermochemical sulfate reduction (TSR). The carbon (−9.9‰ to −1.4‰ Vienna Pee Dee Belemnite (V-PDB)) and oxygen (−14.3‰ to −7.7‰ V-PDB) isotope signatures of dolomites associated with the first Cu–Co stage are in agreement with the interpretation that these dolomites are by-products of BSR. The carbon (−8.6‰ to +0.3‰ V-PDB) and oxygen (−24.0‰ to −10.3‰ V-PDB) isotope signatures of dolomites associated with the second Cu–Co stage are mostly similar to the δ13C (−7.1‰ to +1.3‰ V-PDB) and δ18O (−14.5‰ to −7.2‰ V-PDB) of the host rock and of the dolomites of the first Cu–Co stage. This indicates that the dolomites of the second Cu–Co stage precipitated from a high-temperature, host rock-buffered fluid, possibly under the influence of TSR. The dolomites associated with the first Cu–Co stage are characterized by significantly radiogenic Sr isotope signatures (0.70987 to 0.73576) that show a good correspondence with the Sr isotope signatures of the granitic basement rocks at an age of ca. 816 Ma. This indicates that the mineralizing fluid of the first Cu–Co stage has most likely leached radiogenic Sr and Cu–Co metals by interaction with the underlying basement rocks and/or with arenitic sedimentary rocks derived from such a basement. In contrast, the Sr isotope signatures (0.70883 to 0.71215) of the dolomites associated with the second stage show a good correspondence with the 87Sr/86Sr ratios (0.70723 to 0.70927) of poorly mineralized/barren host rocks at ca. 590 Ma. This indicates that the fluid of the second Cu–Co stage was likely a remobilizing fluid that significantly interacted with the country rocks and possibly did not mobilize additional metals from the basement rocks.


Central African Copperbelt D.R. Congo Stratiform Cu–Co mineralization Stable (S, C, O) and radiogenic (Rb–Sr) isotopes Bacterial and thermochemical sulfate reduction 



We would like to thank the Forrest International Group (G.F.I.) and Compagnie Minière du Sud Katanga (C.M.S.K.) for access to the Luiswishi mine and for the availability of samples. The geologists and workers of the Forrest International Group are thanked for their cooperation during sampling and mine visit. Thanks to Herman Nijs for the careful preparation of numerous thin and polished sections. Thanks to Eric Pirard (University of Liège, Belgium) for the permission to sample the Kamoto borehole F120. The barren host rock carbonate samples of Kambove and Kabolela were collected from the rock collections of the Royal Museum for Central Africa (RMCA, Tervuren, Belgium). We are grateful to Michael Joachimski (University of Erlangen, Germany) for performing the C–O isotope analyses. The paper has benefited from constructive comments by Sharad Master, an anonymous reviewer, the Associate Editor Hartwig Frimmel, and the Editor-in-Chief Bernd Lehmann. The Katholieke Universiteit Leuven is thanked for financing the Ph.D. research of Hamdy El Desouky, through the Development Co-operation Scholarships Programme. This research is also financially support by the research grants number G.0585.06 and G.0414.08 from the FWO-Vlaanderen (Belgium).

Supplementary material

126_2010_298_Fig13_ESM.gif (378 kb)
ESM Fig. 1

Photographs of surface outcrops with supergene mineralization at the Luiswishi open pit mine. Copper (mainly malachite; greenish color) and cobalt (heterogenite; black color) oxide minerals concentrated along cracks (a) and in a fracture zone associated with faulting (b). (GIF 378 kb)

126_2010_298_MOESM1_ESM.tif (16.7 mb)
High resolution image (TIFF 17065 kb)
126_2010_298_Fig14_ESM.gif (230 kb)
ESM Fig. 2

Overview of borehole core samples from the Lower Kambove Member (Third Orebody; Fig. 3b) at the Luiswishi mine. a Samples from borehole LSW1216, where it intercepts with a thick discordant Lufilian tectonic breccia body along a fault cutting a megabreccia block with folded lithologies belonging to the Mines Subgroup (the “monogeneous breccia-type” of Cailteux and Kampunzu 1995). The breccia include millimeter- to centimeter-size angular to subangular clasts cemented by quartz, Cu–Co sulfides, and dolomite (see also ESM Fig. 3k). b Borehole samples from inside a nondisturbed megabreccia block showing a laminated dark/organic-rich host rock with nodules and thin layers crosscut by veins with variable thickness (see arrows; borehole LSW1215). (GIF 229 kb)

126_2010_298_MOESM2_ESM.tif (12.5 mb)
High resolution image (TIFF 12810 kb)
126_2010_298_Fig15_ESM.gif (742 kb)
ESM Fig. 3

Photographs of stained (af, ik) and nonstained (g, h) borehole samples from the Cu–Co mineralization at Kamoto and Luiswishi. a, b Type I nodules surrounded by locally ductile bended host rock laminae, formed due to differential compaction at their borders, and discontinuous type I layers with an irregular boundary with the host rock, which is likely related to differential compaction at their borders. Both are composed of fine-grained Cu–Co sulfides, quartz, and dolomite (see Fig. 6a–c) and hosted in laminated dolomitic shales at Kamoto (a; S.D.B. Member; Upper Orebody) and Luiswishi (b; Lower Kambove Member; Third Orebody). c Numerous type II nodules, circular to subrounded, with coarse-grained Cu–Co sulfides (chalcopyrite and carrollite), quartz, and dolomite (Dol.; see Fig. 6d), hosted in medium-grained dolomite at Luiswishi (B.O.M.Z. Member; Upper Orebody). d One type II nodule hosted in massive dolomite at Luiswishi (R.S.C. Member). e Type II layer, composed of coarse-grained Cu–Co sulfides, quartz, and dolomite, with a sharp boundary toward the host rock, hosted in laminated dolomitic shale at Luiswishi (S.D.-3b Member). f Type II layer, parallel to stratification, cutting and displacing an oblique vein, both hosted in laminated dolomitic shale at Luiswishi (S.D.-3b Member). gi Type II nodules and layers hosted in massive dolomite from the R.S.C. Member (g) and in dolomitic shale from the S.D.B. (h) and S.D.-2a + b + c Members (i) at Kamoto. j Veins cutting stratification (Luiswishi; S.D.-3b Member) and are composed of coarse-grained Cu–Co sulfides, quartz, nonferroan dolomite (Dol.) overgrown and crosscut by ferroan dolomite (blue color; Fe-rich Dol.). k Tectonic breccia with dolomitic shale fragments from the S.D.-2a Member at Luiswishi, cemented by coarse-grained quartz, Cu–Co sulfides and dolomite. This sample has been collected from the same thick-breccia zone shown in ESM Fig. 2a. See Fig. 3b for explanation of the stratigraphic units. (GIF 742 kb)

126_2010_298_MOESM3_ESM.tif (49.9 mb)
High resolution image (TIFF 51139 kb)


  1. Annels AE (1989) Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John's, pp 427–452Google Scholar
  2. Armstrong RA, Master S, Robb LJ (2005) Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. J Afr Earth Sci 42:32–40CrossRefGoogle Scholar
  3. Bartholomé P (1974) On the diagenetic formation of ores in sedimentary beds, with special reference to Kamoto, Shaba, Zaïre. In: Bartholomé P (ed) Gisements Stratiformes et Provinces Cuprifères. Centenaire de la Société Géologique de Belgique, Liége, pp 203–213Google Scholar
  4. Bartholomé P, Katekesha F, Lopez-Ruiz J (1971) Cobalt zoning in microscopic pyrite from Kamoto, Republic of the Congo. Miner Deposita 6:167–176CrossRefGoogle Scholar
  5. Bartholomé P, Evrard P, Katekesha F, Lopez-Ruiz J, Ngongo M (1972) Diagenetic ore-forming processes at Kamoto, Katanga, Republic of the Congo. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Springer, Heidelberg, pp 21–41Google Scholar
  6. Bateman AM (1930) Ores of the North Rhodesian Copperbelt. Econ Geol 25:365–418CrossRefGoogle Scholar
  7. Batumike MJ, Cailteux JLH, Kampunzu AB (2007) Lithostratigraphy, basin development and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt. Gondwana Res 11:432–447CrossRefGoogle Scholar
  8. Binda PL, Porada H (1995) Observations on the Katangan breccias of Zambia. In: Wendorff M, Tack L (eds) Late Proterozoic Belts in Central and Southwestern Africa. IGCP Project 302. Ann Sci Géol 101. Musée Royal de l’Afrique Centrale, Tervuren, pp 49–62Google Scholar
  9. Birck JL (1986) Precision K–Rb–Sr isotopic analysis—application to Rb–Sr chronology. Chem Geol 56:73–83CrossRefGoogle Scholar
  10. Brems D, Muchez Ph, Sikazwe O, Mukumba W (2009) Metallogenesis of the Nkana copper–cobalt South Orebody, Zambia. J Afr Earth Sci 55:185–196CrossRefGoogle Scholar
  11. Cailteux J (1994) Lithostratigraphy of the Neoproterozoic Shaba type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. J Afr Earth Sc 19:279–301CrossRefGoogle Scholar
  12. Cailteux J, Kampunzu AB (1995) The Katangan tectonic breccias in the Shaba province (Zaire) and their genetic significance. In: Wendorff M, Tack L (eds) Late Proterozoic Belts in Central Africa. Ann Sci Géol 101. Musée Royal de l’Afrique Centrale, Tervuren, pp 63–76Google Scholar
  13. Cailteux JLH, Kaputo AK, Kampunzu AB (2003) Structure, lithostratigraphy and Cu–Co mineralization of the Mines Subgroup at Luiswishi, central Africa Copperbelt. In: Cailteux J (ed) Proterozoic sediment-hosted base metal deposits of Western Gondwana, Lubumbashi, pp 103–107Google Scholar
  14. Cailteux JLH, Kazadi MB, Lerouge C, Kampunzu AB (2004) Luiswishi Cu–Co stratiform deposit (D.R. Congo): structural, sedimentary and base metal setting. Proceedings of the Geosciences Africa 2004, University of the Witwatersrand, Johannesburg, South Africa, Abstract vol. 1, pp 97–98Google Scholar
  15. Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158CrossRefGoogle Scholar
  16. Cailteux JLH, Kampunzu AB, Lerouge C (2007) The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the central African Copperbelt, its Cu–Co mineralization, and regional correlations. Gondwana Res 11:414–431CrossRefGoogle Scholar
  17. Canfield DE (2001) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:1117–1124CrossRefGoogle Scholar
  18. Chávez WX Jr (2000) Supergene oxidation of copper deposits: zoning and distribution of copper oxide minerals. Soc Econ Geol Newsl 41:9–21Google Scholar
  19. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  20. Daly MC, Chakroborty SK, Kasolo P, Musiwa M, Mumba P, Naidu B, Namateba C, Ngambi O, Coward MP (1984) The Lufilian arc and Irumide belt of Zambia: results of a geotraverse across their intersection. J Afr Earth Sci 2:311–316CrossRefGoogle Scholar
  21. Davidson CM (1931) The geology and ore deposits of Chambishi, northern Rhodesia. Econ Geol 26:131–154CrossRefGoogle Scholar
  22. Dechow E, Jensen ML (1965) Sulphur isotopes of some central African sulfide deposits. Econ Geol 60:894–941CrossRefGoogle Scholar
  23. De Magnée I, François A (1988) The origin of the Kipushi (Cu, Zn, Pb) deposit in direct relation with a Proterozoic salt diapir. Copperbelt of Central Africa, Shaba, Rep. of Zaïre. In: Friedrich GH, Herzig PM (eds) Base metal sulfide deposits. Springer, Heidelberg, pp 74–93Google Scholar
  24. Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426:95–103CrossRefGoogle Scholar
  25. De Putter T, Dewaele S, Decrée S, Jedwab J (2008) Caractérisation géochimique des minerais de cuivre et cobalt de l’Arc Cuprifère katangais (République Démocratique du Congo) et implications génétiques. Proceedings, 22ème Réunion des Sciences de la Terre, Collogue De Launay, Nancy, France, 21–24th April 2008, p 554Google Scholar
  26. Dewaele S, Muchez Ph, Vets J, Fernandez-Alonzo M, Tack L (2006) Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J Afr Earth Sci 46:455–469CrossRefGoogle Scholar
  27. Dickson JAD (1966) Carbonate identification and genesis revealed by staining. J Sediment Petrol 36:491–505Google Scholar
  28. El Desouky HA (2009) Metallogenesis of stratiform copper deposits in the Lufilian Orogen, Democratic Republic Congo. Unpublished Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 210ppGoogle Scholar
  29. El Desouky H, Haest M, Muchez Ph, Dewaele S, Cailteux J, Heijlen W (2007a) Fluid evolution in the Katanga Copperbelt, Democratic Republic of Congo. In: Andrew CJ et al (eds) Digging deeper. Proceedings of the 9th Biennial SGA Meeting. Irish Association for Economic Geology, Dublin, pp 213–216Google Scholar
  30. El Desouky HA, Muchez Ph, Dewaele S, Boutwood A, Tyler R (2007b) The stratiform copper mineralization of the Lufukwe anticline, Lufilian foreland, Democratic Republic Congo. Geol Belg 10:148–151Google Scholar
  31. El Desouky HA, Muchez Ph, Dewaele S, Boutwood A, Tyler R (2008a) Postorogenic origin of the stratiform Cu mineralization at Lufukwe, Lufilian foreland, Democratic Republic Congo. Econ Geol 103:555–582CrossRefGoogle Scholar
  32. El Desouky H, Muchez Ph, Boyce A, Cailteux J, Dewaele S (2008b) Evidence for two main Cu–Co mineralization phases in the Katanga Copperbelt, DRC. In: Africa Uncovered Mineral Resources for the future—proceedings of the Joint Conference of the Society of Economic Geologists (SEG) and the Geological Society of South Africa (GSSA), Johannesburg, South Africa, pp 234–237Google Scholar
  33. El Desouky HA, Muchez Ph, Tyler R (2008c) The sandstone-hosted stratiform copper mineralization at Mwitapile and its relation to the mineralization at Lufukwe, Lufilian foreland, Democratic Republic Congo. Ore Geol Rev 34:561–579CrossRefGoogle Scholar
  34. El Desouky HA, Muchez Ph, Cailteux J (2009a) Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geol Rev 36:315–332CrossRefGoogle Scholar
  35. El Desouky H, Muchez Ph, Boyce A, Cailteux J, Dewaele S (2009b) Sources of sulphur in the Katanga Copperbelt, Democratic Republic of Congo. In: Williams PJ et al (eds) Smart science for exploration and mining. Proceedings of the 10th Biennial SGA Meeting, James Cook University, Economic Geology Research Unit, Townsville, Australia. Millbank, Rotterdam, pp 432–434Google Scholar
  36. El Desouky H, Muchez Ph, Schneider J, Cailteux J (2009c) Stable (C–O) and radiogenic (Sr) isotope geochemistry of the Luiswishi and Kamoto Cu–Co ore deposits, Katanga Copperbelt, Democratic Republic of Congo. In: Williams PJ et al (eds) Smart science for exploration and mining. Proceedings of the 10th Biennial SGA Meeting, James Cook University, Economic Geology Research Unit, Townsville, Australia. Millbank, Rotterdam, pp 435–437Google Scholar
  37. Fallick AE, McConville P, Boyce AJ, Burgess R, Kelley SP (1992) Laser microprobe stable isotope measurements on geological-materials—some experimental considerations (with special reference to Delta-34S in sulphides). Chem Geol 101:53–61Google Scholar
  38. Fleischer VD, Garlick WG, Haldane R (1976) Geology of the Zambian Copper Belt. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 6. Elsevier, New York, pp 223–352Google Scholar
  39. François A (1973) L’extrémité occidentale de l’arc cuprifère shabien. Etude géologique, Bureau d’études géologiques. Gécamines-Exploitation, Likasi, Zaïre, 65 ppGoogle Scholar
  40. François A (1974) Stratigraphie, tectonique et minéralisations dans l’arc cuprifère du Shaba (République du Zaïre). In: Bartholomé P (ed) Gisements Stratiformes et Provinces Cuprifères. La Société Géologique de Belgique, Liège, pp 79–101Google Scholar
  41. François A (1987) Synthèse géologique sur l’arc cuprifère du Shaba (Rép. Du Zaïre). Centenaire de la Société Belge de Géologie, Liege, pp 15–65Google Scholar
  42. Garlick WG (1961) The syngenetic theory. In: Mendelsohn F (ed) The geology of the Northern Rhodesian Copperbelt. Macdonald, London, pp 146–165Google Scholar
  43. Garlick WG (1965) Criteria for recognition of syngenetic sedimentary mineral deposits and veins formed by their remobilization. Gen. Proc. 8th Commonwealth Min. Metall. Congress, 6, 1393–1418. Proc Australas Inst Min Metall 6:1393–1418Google Scholar
  44. Garlick WG (1981) Sabkhas, slumping, and compaction at Mufulira, Zambia. Econ Geol 76:1817–1847CrossRefGoogle Scholar
  45. Garlick WG (1989) Genetic interpretation from ore relations to algal reefs in Zambia and Zaire. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John's, pp 471–498Google Scholar
  46. Garlick WG, Brummer JJ (1951) The age of the granites of the northern Rhodesian Copperbelt. Econ Geol 46:478–498CrossRefGoogle Scholar
  47. Gray A (1932) The Mufulira copper deposit, Northern Rhodesia. Econ Geol 27:315–343CrossRefGoogle Scholar
  48. Gray DR, Gregory RT, Durney DW (1991) Rock-buffered fluid–rock interaction in deformed quartz-rich turbidite sequences, Eastern Australia. J Geophys Res 96:19681–19704CrossRefGoogle Scholar
  49. Haest M, Muchez Ph, Dewaele S, Boyce AJ, Av Q, Schneider J (2009) Petrographic, fluid inclusion and isotopic study of the Dikulushi Cu–Ag deposit, Katanga (D.R.C.): implications for exploration. Miner Deposita 44:505–522CrossRefGoogle Scholar
  50. Hanson RE, Wardlaw MS, Wilson TJ, Mwale G (1993) U–Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: constraints on Pan-African deformation, plutonism and transcurrent shearing in central Zambia. Precambrian Res 63:189–210CrossRefGoogle Scholar
  51. Harrison AG, Thode HG (1957) The kinetic isotope effect in the chemical reduction of sulfate. Trans Faraday Soc 53:1648–1651CrossRefGoogle Scholar
  52. Heijlen W, Banks DA, Muchez Ph, Stensgard BM, Yardley BWD (2008) The nature of mineralizing fluids of the Kipushi Zn–Cu deposit, Katanga, Democratic Republic of Congo: quantitative fluid inclusion analysis using laser ablation ICP-MS, and bulk crush-leach methods. Econ Geol 103:1459–1482CrossRefGoogle Scholar
  53. Hitzman MW, Beaty DW (1996) The Irish Zn–Pb–(Ba) orefield. Soc Econ Geol Spec Pub 4:112–143Google Scholar
  54. Hitzman MW, Kirkham R, Broughton D, Thorson J, Selley D (2005) The sediment-hosted stratiform copper ore system. Econ Geol 100th Anniversary Volume:609–642Google Scholar
  55. Holser WT (1977) Catastrophic chemical events in the history of the ocean. Nature 267:403–408CrossRefGoogle Scholar
  56. Holser WT, Kaplan IR (1966) Isotope geochemistry of sedimentary sulfates. Chem Geol 4:93–155CrossRefGoogle Scholar
  57. Hoy LD, Ohmoto H (1989) Constraints for the genesis of redbed associated stratiform Cu deposits from sulphur and carbon mass balance relations. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John's, pp 135–149Google Scholar
  58. Hudson JD, Anderson TF (1989) Ocean temperatures and isotopic compositions through time. Trans Roy Soc Edinburgh 80:183–192Google Scholar
  59. Hurtgen MT, Arthur MA, Suits NS, Kaufman AJ (2002) The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet Sci Lett 203:413–429CrossRefGoogle Scholar
  60. Hurtgen MT, Arthur MA, Halverson GP (2005) Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology 33:41–44CrossRefGoogle Scholar
  61. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  62. Jackson GCA (1932) The geology of the Nchanga district, northern Rhodesia. J Geol Soc Lond 88:443–515CrossRefGoogle Scholar
  63. Jackson MPA, Warin ON, Woad GM, Hudec MR (2003) Neoproterozoic allochthonous salt tectonics during the Lufilian orogeny in the Katanga Copperbelt, central Africa. Geol Soc Am Bull 115:314–330CrossRefGoogle Scholar
  64. Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161:37–57CrossRefGoogle Scholar
  65. John T, Schenk V, Mezger K, Tembo F (2004) Timing and P–T evolution of whiteschist metamorphism in the Lufilian arc-Zambezi belt orogen (Zambia): Implication for the assembly of Gondwana. J Geol 112:71–90CrossRefGoogle Scholar
  66. Kampunzu AB, Cailteux J (1999) Tectonic evolution of the Lufilian Arc during Neoproterozoic Pan African orogenesis. Gondwana Res 2:401–421CrossRefGoogle Scholar
  67. Kampunzu AB, Cailteux JLH, Kamona AF, Intiomale MM, Melcher F (2009) Sediment-hosted Zn–Pb–Cu deposits in the Central African Copperbelt. Ore Geol Rev 35:263–297CrossRefGoogle Scholar
  68. Kelley SP, Fallick AE (1990) High-precision spatially resolved analysis of delta-34-S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888CrossRefGoogle Scholar
  69. Kenis I, Muchez Ph, Sintubin M, Mansy JL, Lacquement F (2000) The use of a combined structural, stable isotope and fluid inclusion study to constrain the kinematic history at northern Variscan front zone (Bettrechnies, northern France). J Struct Geol 22:589–602CrossRefGoogle Scholar
  70. Key RM, Liyungu AK, Njamu FM, Somwe V, Banda J, Mosley PN, Armstrong RA (2001) The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. J Afr Earth Sci 33:503–528CrossRefGoogle Scholar
  71. Kirkham RV (1989) Distribution, settings and genesis of sediment-hosted stratiform copper deposits. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John’s, pp 3–38Google Scholar
  72. Kiyosu Y, Krouse HR (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem J 24:21–27Google Scholar
  73. Kohn MJ, Riciputi LR, Stakes D, Orange DL (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization? Am Mineral 83:1454–1468Google Scholar
  74. Land LS (1983) The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In: Arthur MA (ed) Stable isotopes in sedimentary geology. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 4.1–4.22Google Scholar
  75. Lefebvre JJ (1989) Depositional environment of copper–cobalt mineralization in the Katangan sediments of southeast Shaba. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John's, pp 401–426Google Scholar
  76. Lerouge C, Cocherie A, Cailteux J, Kampunzu AB, Breton J, Gilles C, Milési J-P (2004) Preliminary U–Th–U electron microprobe dating of monazite: chronological constraints on the genesis of the Luiswishi Cu–Co–U ore deposit, D.R. Congo. Proceedings of the Geosciences Africa 2004, University of the Witwatersrand, Johannesburg, South Africa, Abstract vol. 1, pp 382–383Google Scholar
  77. Lerouge C, Cailteux J, Kampunzu AB, Milesi JP, Fléhoc C (2005) Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC). J Afr Earth Sci 42:173–182CrossRefGoogle Scholar
  78. Lindsay JF, Kruse PD, Green OR, Hawkins E, Brasier MD, Cartlidge J, Corfield RM (2005) The Neoproterozoic–Cambrian record in Australia: a stable isotope study. Precambrian Res 143:113–133CrossRefGoogle Scholar
  79. Machel HG (1987a) Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction. Geology 15:936–940CrossRefGoogle Scholar
  80. Machel HG (1987b) Some aspects of diagenetic sulphate-hydrocarbon redox-reactions. In: Marshall JD (ed) Diagenesis of sedimentary sequences. Geol Soc Spec Pub 36. Geological Society, London, pp 15–28Google Scholar
  81. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175CrossRefGoogle Scholar
  82. Machel HG, Foght J (2000) Products and depth limits of microbial activity in petroliferous subsurface settings. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 105–120Google Scholar
  83. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389CrossRefGoogle Scholar
  84. Macqueen RW, Powell TG (1983) Organic geochemistry of the Pine Point lead–zinc ore field and region, Northwest Territories, Canada. Econ Geol 78:1–25CrossRefGoogle Scholar
  85. Marquer D, Burkhard M (1992) Fluid circulation, progressive deformation and mass-transfer processes in the upper crust: the example of basement-cover relationship in the External Crystalline Massifs, Switzerland. J Struct Geol 14:1047–1057CrossRefGoogle Scholar
  86. Master S, Rainaud C, Armstrong RA, Phillips D, Robb LJ (2005) Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J Afr Earth Sci 42:41–60CrossRefGoogle Scholar
  87. McGowan RR, Roberts S, Foster RP, Boyce AJ, Coller D (2003) Origin of the copper–cobalt deposits of the Zambian Copperbelt: an epigenetic view from Nchanga. Geology 31:494–500CrossRefGoogle Scholar
  88. McGowan RR, Roberts S, Boyce AJ (2006) Origin of the Nchanga copper–cobalt deposits of the Zambian Copperbelt. Miner Deposita 40:617–638CrossRefGoogle Scholar
  89. Mendelsohn F (1961a) Metamorphism. In: Mendelsohn F (ed) The geology of the Northern Rhodesian Copperbelt. Macdonald, London, pp 106–116Google Scholar
  90. Mendelsohn F (1961b) Ore genesis: summary of the evidence. In: Mendelsohn F (ed) The geology of the Northern Rhodesian Copperbelt. Macdonald, London, pp 130–146Google Scholar
  91. Misra KC (2000) Understanding mineral deposits. Kluwer Academic, Dordrecht, 845 ppGoogle Scholar
  92. Molak B (1995) Some structural and petrological aspects of the Cu (Co) mineralization in the Copperbelt and northwestern provinces of Zambia. Tervuren, Belgium, Royal Museum of Central Africa. Ann Sci Géol 101:95–102Google Scholar
  93. Mougin P, Lamoureux-Var V, Bariteau A, Huc AY (2007) Thermodynamics of thermochemical sulphate reduction. J Petrol Sci Eng 58:413–427CrossRefGoogle Scholar
  94. Muchez Ph, Slobodnik M, Viaene W, Keppens E (1995) Geochemical constraints on the origin and migration of palaeofluids at the northern margin of the Variscan foreland, southern Belgium. Sediment Geol 96:191–200CrossRefGoogle Scholar
  95. Muchez Ph, Brems D, El Desouky H, Dewaele S, Haest M, Vanderhaegen P, Heijlen W, Mukumba W (2007) Base metal ore deposit evolution and geodynamics in the Central African Copperbelt. In: Andrew CJ et al (eds) Digging deeper—proceedings of the 9th Biennial SGA Meeting. Irish Association for Economic Geology, Dublin, pp 209–212Google Scholar
  96. Muchez Ph, Vanderhaeghen P, El Desouky H, Schneider J, Boyce A, Dewaele S, Cailteux J (2008) Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo). Miner Deposita 43:575–589CrossRefGoogle Scholar
  97. Müller G (1967) Diagenesis in argillaceous sediments. In: Larsen G, Chilingar GU (eds) Diagenesis in sediments, developments in sedimentology 8. Elsevier, Amsterdam, pp 127–178Google Scholar
  98. Ngoyi K, Liégeois J-P, Demaiffe D, Dumont P (1991) Age tardiubendien (Protérozoïque inférieur) des dômes granitiques de l’arc cuprifère zaïro-zambien. Compte Rendu de l’Académie des Sciences Paris 313:83–89Google Scholar
  99. Nielsen P, Swennen R, Keppens E (1994) Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium. Sedimentology 41:567–584CrossRefGoogle Scholar
  100. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in mineralogy 16. Mineralogical Society of America, Chantilly, pp 491–559Google Scholar
  101. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  102. Porada H (1989) Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil. Precambrian Res 44:103–136CrossRefGoogle Scholar
  103. Porada H, Berhorst V (2000) Towards a new understanding of the Neoproterozoic–Early Palaeozoic Lufilian and northern Zambezi belts in Zambia and the Democratic Republic of Congo. J Afr Earth Sci 30:727–771CrossRefGoogle Scholar
  104. Rainaud C, Master S, Armstrong RA, Phillips D, Robb LJ (2005) Monazite dating and 40Ar–39Ar thermochronology of metamorphic events in the Central African Copperbelt during the Pan-African Lufilian Orogeny. J Afr Earth Sci 42:183–199CrossRefGoogle Scholar
  105. Rosenbaum J, Sheppard SM (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150CrossRefGoogle Scholar
  106. Schwartz GM (1934) Paragenesis of the oxidized ores of copper. Econ Geol 29:55–75CrossRefGoogle Scholar
  107. Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F (2005) A new look at the geology of the Zambian Copperbelt. Econ Geol 100th Anniversary Volume:965–1000Google Scholar
  108. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineralogical Society of America, Washington, D.C., 570 ppGoogle Scholar
  109. Smith TM, Dorobek SL (1993) Alteration of early-formed dolomite during shallow to deep burial: Mississippian Mission Canyon Formation, central to southwestern Montana. Geol Soc Am Bull 105:1389–1399CrossRefGoogle Scholar
  110. Sweeney MA, Binda PL (1989) The role of diagenesis in the formation of the Konkola Cu–Co ore-body of the Zambian Copperbelt. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Ass Canada, Spec Pap 36. Geological Association of Canada, St. John's, pp 499–518Google Scholar
  111. Sweeney MA, Binda PL (1994) Some constraints on the formation of the Zambian Copperbelt deposits. J Afr Earth Sci 19:303–313CrossRefGoogle Scholar
  112. Sweeney MA, Turner P, Vaughan DJ (1986) Stable isotope and geochemical studies of the role of early diagenesis in ore formation, Konkola basin, Zambian Copperbelt. Econ Geol 81:1838–1852CrossRefGoogle Scholar
  113. Sweeney MA, Binda PL, Vaughn DJ (1991) Genesis of the ores of the Zambian Copperbelt. Ore Geol Rev 6:51–76CrossRefGoogle Scholar
  114. Unrug R (1988) Mineralisation controls and source of metals in the Lufilian Fold Belt, Shaba (Zaire), Zambia and Angola. Econ Geol 83:1247–1258CrossRefGoogle Scholar
  115. Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395CrossRefGoogle Scholar
  116. Verhaert G, Muchez Ph, Keppens E, Sintubin M (2009) Fluid impact and spatial and temporal evolution of normal faulting in limestones. A case study in the Burdur-Isparta region (SW Turkey). Geol Belg 12:59–73Google Scholar
  117. Wachter E, Hayes JM (1985) Exchange of oxygen isotopes in carbon-dioxide–phosphoric acid systems. Chem Geol 52:365–374Google Scholar
  118. Wagner T, Boyce AJ (2006) Pyrite metamorphism in the Devonian Hunsrück Slate of Germany: insights from laser microprobe sulfur isotope analysis and thermodynamic modelling. Am J Sci 306:525–552CrossRefGoogle Scholar
  119. Wagner T, Okrusch M, Weyer S, Lorenz J, Lahaye Y, Taubald H, Schmitt RT (2010) The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Miner Deposita 45:217–239CrossRefGoogle Scholar
  120. Wendorff M (2000) Genetic aspects of the Katangan megabreccias: Neoproterozoic of Central Africa. J Afr Earth Sci 30:703–715CrossRefGoogle Scholar
  121. Wendorff M (2005) Evolution of Neoproterozoic–Lower Palaeozoic Lufilian arc, Central Africa: a new model based on syntectonic conglomerates. J Geol Soc Lond 162:5–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hamdy A. El Desouky
    • 1
  • Philippe Muchez
    • 1
  • Adrian J. Boyce
    • 2
  • Jens Schneider
    • 1
  • Jacques L. H. Cailteux
    • 3
  • Stijn Dewaele
    • 4
  • Albrecht von Quadt
    • 5
  1. 1.Geodynamics & Geofluids Research GroupK.U.LeuvenLeuvenBelgium
  2. 2.Isotope Geoscience UnitSUERCGlasgowUK
  3. 3.Département Recherche et DéveloppementE.G.M.F., Groupe Forrest InternationalLubumbashiDemocratic Republic of Congo
  4. 4.Department of Geology and MineralogyRoyal Museum for Central Africa (RMCA)TervurenBelgium
  5. 5.Institute of Isotope Geochemistry and Mineral ResourcesSwiss Federal Institute of Technology Zurich (ETH)ZurichSwitzerland

Personalised recommendations