Mineralium Deposita

, 44:363 | Cite as

Zinc–germanium ores of the Tres Marias Mine, Chihuahua, Mexico

  • Bernhardt Saini-Eidukat
  • Frank Melcher
  • Jerzy Lodziak


The Tres Marias carbonate-hosted Zn–Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn–Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.


Tres Marias Mexico Willemite Sphalerite Germanium Mississippi Valley type 



This research was undertaken while BSE was a Senior Researcher at the Federal Institute for Geosciences and Natural Resources (BGR) funded by the German–American Fulbright Commission. North Dakota State University is gratefully acknowledged for providing developmental leave to carry out this research. We thank Dan Reetz for assistance with artwork, and Dave Hackman, Roberto del Rio, and Alistair Logan of War Eagle Mining for their support in the field and with artwork. Ulf Hemmerling (Technical University of Clausthal) provided excellent polished sections. Support by Thomas Oberthür (BGR) is greatly appreciated.


  1. Beaudoin G (2000) Acicular sphalerite enriched in Ag, Sb, and Cu embedded within color-banded sphalerite from the Kokanee Range, British Columbia, Canada. Can Mineral 38:1387–1398CrossRefGoogle Scholar
  2. Bi X (2007) Germanium 2006, USGS Minerals Yearbook. p 30.1–30.4Google Scholar
  3. Brugger J, McPhail DC, Wallace M, Waters J (2003) Formation of willemite in hydrothermal environments. Econ Geol 98:819–835CrossRefGoogle Scholar
  4. Dutrizac JE, Chen TT, Longton RJ (1996) The mineralogical deportment of germanium in the Clarksville Electrolytic Zinc Plant of Savage Zinc Inc. Metall and Mater Transact B 27:567–576CrossRefGoogle Scholar
  5. Groves IM, Carman CE, Dunlap WJ (2003) Geology of the Beltana willemite deposit, Flinders Range, South Australia. Econ Geol 98:797–818CrossRefGoogle Scholar
  6. Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium—a review. Ore Geol Rev 30:145–180CrossRefGoogle Scholar
  7. Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol 100th Anniversary Volume, pp 561–607Google Scholar
  8. Lombaard AF, Günzel A, Innes J, Krüger TL (1986) The Tsumeb lead–copper–zinc–silver deposit, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. vol. 2. Geological Society of South Africa, Johannesburg, pp 1761–1782Google Scholar
  9. Maxwell RA, Lonsdale JT, Hazzard RI, Wilson JA (1967) Geology of Big Bend National Park, Brewster County, Texas. Univ Texas, Publ No 6711, p 320Google Scholar
  10. Megaw PKM (2002) Technical report on the Tres Marias zinc/germanium project. Internal Report War Eagle Mining Co., p 33Google Scholar
  11. Megaw PKM, Barton MD, Islas-Falce J (1996) Carbonate hosted lead-zinc (Ag, Cu, Au): Deposits of Northern Chihuahua, Mexico. In: Sangster DF (ed) Carbonate-hosted lead-zinc deposits. Soc Econ Geol Spec Publ 4, pp 277–289Google Scholar
  12. Megaw PKM, Ruiz J, Titley SR (1988) High-temperature, carbonate-hosted, Pb-Zn-Ag massive sulphide deposits of Mexico: an overview. Econ Geol 83:1856–1885CrossRefGoogle Scholar
  13. Melcher F (2003) The Otavi Mountain Land in Namibia: Tsumeb, germanium and Snowball Earth. Mitt Österr Mineral Ges 148:413–435Google Scholar
  14. Melcher F, Oberthür T, Rammlmair D (2006) Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu–Zn–Ag sulfide deposit, Otavi Mountain Land, Namibia. Ore Geol Rev 28:32–56CrossRefGoogle Scholar
  15. Monteiro LVS, Bettencourt JS, Juliani C, de Oliveira TF (2006) Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrosia and Fagundes sulfide-rich carbonate-hosted Zn–(Pb) deposits, Minas Gerais, Brazil. Ore Geol Rev 28:201–234Google Scholar
  16. Schneider J, Melcher F, Brauns M (2007) Concordant ages for the giant Kipushi base metal deposit from direct Rb–Sr and Re–Os dating of sulfides. Miner Depos 42:791–797CrossRefGoogle Scholar
  17. Schroll E (1997) Geochemische und geochronologische Daten und Erläuterungen. In: Weber L (ed) Handbuch der Lagerstätten der Erze und Industrieminerale und Energierohstoffe Österreichs. Archiv für Lagerstättenforschung, Geologische Bundesanstalt, WienGoogle Scholar
  18. Sheffer HW (1966) The occurrence of germanium in willemite. Geochim Cosmochim Acta 30:837–838CrossRefGoogle Scholar
  19. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126Google Scholar
  20. Smith G R (2008) Germanium 2008. USGS Mineral Commodity Summaries, pp 70–71Google Scholar
  21. Song X (1984) Minor elements and ore genesis of the Fankou lead-zinc deposit, China. Miner Depos 19:95–104Google Scholar
  22. Song X, Tan H (1996) Geochemical characteristics of the Fankou Pb-Zn deposits, northern Guangdong, South China. In: Sangster DF (ed) Carbonate-hosted lead-zinc deposits. Soc Econ Geol Spec Publ 4, pp 350–355Google Scholar
  23. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102CrossRefGoogle Scholar
  24. Yates RG, Thompson GA (1959) Geology and quicksilver deposits of the Terlingua District, Texas. USGS Professional Paper 312, pp 114 pGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bernhardt Saini-Eidukat
    • 1
  • Frank Melcher
    • 2
  • Jerzy Lodziak
    • 2
  1. 1.Department of GeosciencesNorth Dakota State UniversityFargoUSA
  2. 2.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany

Personalised recommendations