Mineralium Deposita

, Volume 44, Issue 5, pp 559–580 | Cite as

Nonsulfide zinc deposits in the Silesia–Cracow district, Southern Poland

  • Vito Coppola
  • Maria BoniEmail author
  • H. Albert Gilg
  • Bozena Strzelska-Smakowska


The Silesia–Cracow district in Poland has been one of the world’s principal sources of zinc from nonsulfide zinc ore (Polish: galman). The still remaining nonsulfide ore resources can be estimated at 57 Mt at 5.6% Zn and 1.4% Pb. Nonsulfide mineralization is mainly hosted by Lower Muschelkalk (Triassic) limestone and is associated with different generations of the hydrothermal ore-bearing dolomite (OBD I, II, III). A fundamental ore control is believed to have been exerted by the basement faults, which were repeatedly reactivated during the Alpine tectonic cycle, leading to the formation of horst-and-graben structures: these dislocations may have caused short periods of emersion and the circulation of meteoric waters during the Cenozoic. Nonsulfide ores show a wide range of morphological characteristics and textures. They occur as earthy masses, crystalline aggregates, and concretions in cavities. Breccia and replacement textures are also very common. The most important mineral phases are: smithsonite, Fe–smithsonite, Zn–dolomite, goethite, and Fe–Mn(hydr)oxides. Minor hemimorphite and hydrozincite have also been detected. Two distinct nonsulfide ore types occur: the predominant red galman and the rare white galman. In the white galman, Fe–smithsonite and Zn–dolomite are particularly abundant. This ore type is commonly considered as a peripheral hydrothermal alteration product related to the same fluids that precipitated both the OBD II–III and the sulfides. In contrast, a supergene origin is commonly assumed for the red galman. Evidence of the petrographic and mineralogical difference between white and red galman is also found in stable isotope data. Smithsonite from red galman shows a limited range of δ 13CVPDB values (−10.1 to −11.4‰), and δ 18OVSMOW values (25.3‰ to 28.5‰, mean 26.8 ± 0.3‰). The uniform and low carbon isotope values of red galman smithsonite are unusual for supergene carbonate-hosted deposits and indicate the predominance of a single organic carbon source. Smithsonite from white galman has a more variable, slightly more positive carbon isotope (−2.9‰ to −7.4‰), but broadly similar oxygen isotope composition (26.8‰ to 28.9‰). The relationship of the white galman ore with the hydrothermal system responsible for OBD II and sulfide generation is still uncertain. The most important paleoweathering events took place in both Lower and Upper Silesia during Late Cretaceous up to Paleogene and early Neogene time. During this period, several short-lasting emersions and intense weathering episodes facilitated the formation of sinkholes in the Triassic carbonate rocks and the oxidation of sulfide orebodies through percolating meteoric waters. These phenomena may have lasted until the Middle Miocene.


Silesia–Cracow Poland Nonsulfide zinc Paleoweathering Smithsonite Stable isotopes 



Without the help and guidance of the late Prof. W. Zabinsky of the Mining Academy in Cracow, this study would have probably never been initiated. We are also indebted to M. Szuwarzynski, H. Kucha, A. Paulo, and M. Krzak (Poland) for help and stimulating discussion. We would like to thank also the geologists of the Trzebionka and Pomorzany mines for having guided our team and for extra samples. V. Coppola wishes to thank R. Herrington and the staff of EMMA division at the Natural History Museum, London, for the analytical support during an ACCORD project. Special thanks is due to Bernd Lehmann and to an unknown referee for careful reviews and editing.


  1. Alexandrowicz SW (1969) Utwory paleogenu w poludniowej części Wyżyny Krakowskiej (Couches de Paléogène de la partie méridionale du Plateau de Cracovie). Rocznik Polskiego Towarzystwa Geologicznego (Annales Societatis Geologorum Poloniae) 39:681–694Google Scholar
  2. Assmann P (1944) Die Stratigraphie der oberschlesischen Trias. I. Der Muschelkalk. Abhandlungen des Reichsamts für Bodenforschung, N.F. 208:124Google Scholar
  3. Bak B (1993) Ferroan dolomites and ankerites from the Silesian–Krakow deposits of zinc and lead ores. Geol Q 37:279–290Google Scholar
  4. Bak B, Nieć M (1978) The occurrence of monheimite in the Boleslaw Zn–Pb ore deposits near Olkusz. Mineral Pol 9:123–128Google Scholar
  5. Bak B, Zabinski W (1981) On the continuity of the solid solution series smithsonite–siderite. Mineral Pol 12:75–80Google Scholar
  6. Belogub EV, Novoselov KA, Yakovleva VA, Spiro B (2008) Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geol Rev 33:239–254CrossRefGoogle Scholar
  7. Bodnar RJ, Sterner MS (1987) Synthetic fluid inclusions. In: Ulmer GC, Barnes HL (eds) Hydrothermal experimental techniques. Wiley, New York, pp 423–457Google Scholar
  8. Bogacz K, Dzulynski S, Haranczyk C, Sobczynski P (1975) Origin of the ore-bearing dolomite in the Triassic of the Krakow–Silesian Pb–Zn ore district. Annales de la Société Géologique de Pologne 45:139–155Google Scholar
  9. Boni M, Gilg HA, Aversa G, Balassone G (2003) The “Calamine” of SW Sardinia (Italy): geology, mineralogy and stable isotope geochemistry of a supergene Zn-mineralization. Econ Geol 98:731–748CrossRefGoogle Scholar
  10. Boni M, Gilg HA, Balassone G, Schneider J, Allen CA, Moore F (2007) Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Miner Depos 42(8):799–820CrossRefGoogle Scholar
  11. Breithaupt A (1841) Vollständiges Handbuch der Mineralogie 2:252Google Scholar
  12. Cabala J (2001) Development of oxidation in Zn–Pb deposits in Olkusz area. In: Mineral deposits at the beginning of the 21st century. Piestrzynsky A, et al (eds) Proceedings Sixth Biennial SGA Meeting Krakow:121–124Google Scholar
  13. Cerling TE (1984) The stable isotope composition of modern soil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240CrossRefGoogle Scholar
  14. Chang LLJ, Howie RA, Zussmann J (1995) Rock-forming minerals. Non-Silicates: vol. 5B, Longman, London: 392Google Scholar
  15. Church SE, Vaughn RB, Gent CA, Hopkins RT (1996) Lead-isotopic, sulfur isotopic, and trace-element studies of galena from the Silesia–Krakow Zn–Pb ores, polymetallic veins from Góry Świętokrzyskie Mts. and Mysków porphyry copper deposit, Poland. Pr Inst Geol 154:139–155Google Scholar
  16. Cooper BJ, Gibbs GV, Ross FK (1981) The effects of heating and dehydration on the crystal structure of hemimorphite up to 600°C. Zeitschrift für Kristallographie 156:305–321Google Scholar
  17. Coppola V, Boni M, Gilg HA, Balassone G, Dejonghe L (2008) The “calamine” nonsulfide Zn–Pb deposits of Belgium: petrographical, mineralogical and geochemical characterization. Ore Geol Rev 33:187–210CrossRefGoogle Scholar
  18. Czaja M (1978) New data on tarnowskite (tarnowitzite) from Tarnowskie Gory. Mineral Pol 9:89–96Google Scholar
  19. Dubinska E, Sakharov BA, Kapron G, Bylina P, Kozubowski JA (2000) Layer silicates from Szklary (Lower Silesia): from ocean floor metamorphism to continental chemical weathering. Geologica Sudetica 33(2):85–106Google Scholar
  20. Dzulynski S (1953) Tektonika poludniowej czesci Wyzyny Krakowskiej. Acta Geol Pol 3:325–441Google Scholar
  21. Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinement of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite, with discussion of some aspects of the stereochemistry of calcite-type carbonates. Zeitschrift für Kristallographie 156:223–243Google Scholar
  22. Felisiak I (1992) Oligocene–Early Miocene karst deposits and their importance for recognition of the development of tectonics and relief in the Carpathian Foreland, Krakow Region, Southern Poland. Ann Soc Geol Pol 62:173–207Google Scholar
  23. Gilg HA (2003) Ein Beitrag zur Isotopen-Geochemie von Tonmineralien und Tonen. Habilitationschrift. Fakultät Chemie, Technische Universität MünchenGoogle Scholar
  24. Gilg HA, Struck U, Vennemann T, Boni M (2003) Phosphoric acid fractionation for smithsonite and cerussite between 25 and 72°C. Geochim Cosmochim Acta 67:4049–4055CrossRefGoogle Scholar
  25. Gilg HA, Boni M, Hochleitner R, Struck U (2008) Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn–Pb deposits. Ore Geol Rev 33:117–133CrossRefGoogle Scholar
  26. Goldstein RH (2001) Fluid inclusions in sedimentary and diagenetic systems. Lithos 55:159–193CrossRefGoogle Scholar
  27. Gorecka E (1993) Geological setting of the Silesian–Krakow Zn–Pb deposits. Geol Q 37:127–146Google Scholar
  28. Gorecka E, Kozlowski A, Kibitlewski S (1996) The Silesian–Cracow Zn–Pb deposits, Poland: Considerations on ore-forming processes. In: Gorecka E, Leach DL, Kozlowski A (eds), Carbonate-hosted zinc-lead deposits in the Silesian–Cracow area, Poland, Warsaw, Prace Państwowego Instytutu Geologicznego: 166–181Google Scholar
  29. Götte T, Richter DK (2004) Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite. Mineral Mag 68:199–207CrossRefGoogle Scholar
  30. Gruszczyk H, Paulo A (1976) Strefa przejściowa w utworach węglanowych triasu obszaru Olkusza. Kwartalnik Geologiczny 20:737–749Google Scholar
  31. Gruszczyk H, Wielgomas L (1987) Zinc and lead ores in the Silesia–Krakow Triassic. In: Osika R (ed) Geology of poland, Volume VI. Mineral Deposits, Publishing House Wydawnictwa Geologiczne, Warsaw, pp 172–183Google Scholar
  32. Gürich G (1897) Das Mineralreich. In: Hausschatz des Wissens, Abteilung IV (B.6), J. Neumann Verlag, 754 ppGoogle Scholar
  33. Heijlen W, Muchez Ph, Banks DA, Schneider J, Kucha H, Keppens E (2003) Carbonate-hosted Zn–Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ Geol 98:911–932CrossRefGoogle Scholar
  34. Hitzman MW, Reynolds NA, Sangster DF, Allen CR, Carman C (2003) Classification, genesis, and exploration guides for non-sulfide zinc deposits. Econ Geol 98:685–714CrossRefGoogle Scholar
  35. Kotlicki S, Kubicz A (1974) Trias Slaska Opolskiego. Przewodnik 46 Zjazdu PTG, Opole. Wydawnictwa Geologiczne: 18–26Google Scholar
  36. Kowalski B, Gromada E, Swaldek M (1979) Granulometric and litho-petrographic characteristics of boulder clay from the Witkowska Valley in the Swiety Krzyz Mountains. Rocznik Polskie Towarzystwo Geologiczne 49:343–377Google Scholar
  37. Kozlowski A (1995) Origin of Zn–Pb ores in the Olkusz and Chrzanów districts: a model based on fluid inclusions. Acta Geol Pol 45:83–141Google Scholar
  38. Kucha H (2003) Mississippi Valley Type Zn–Pb deposits of Upper Silesia, Poland. In: Kelly JG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L, Stanley G (eds) Europe’s major base metal deposits. Irish Association for Economic Geology, Dublin, pp 253–271Google Scholar
  39. Kucha H (2005) Oxysulfides, smithsonite-siderite and Fe-free smithsonite as indicators of conditions of formation of primary and supergene non-sulfide Zn–Pb deposits, Upper Silesia, Poland. ESF Workshop on Nonsulfide Zn–Pb Deposits, 21th–23th April, 2005, Iglesias, Italy, Abstract: 24–25Google Scholar
  40. Kucha H, Czajka K (1984) Sulfide–carbonate relationships in Upper Silesian Zn–Pb deposits (Mississippi Valley type), Poland, and their genesis. Trans Inst Min Metall 93:B12–B19Google Scholar
  41. Lawrence LJ, Rafter TA (1962) Sulfur isotope distribution in sulfides and sulfates from Broken Hill South, New South Wales. Econ Geol 57:217–225CrossRefGoogle Scholar
  42. Leach DL, Viets JG 1992. Comparison of the Krakow–Silesian Mississippi Valley-type district, southern Poland, with Mississippi Valley-type districts in North America. USGS, Open-File Report OF/92–704: 72 ppGoogle Scholar
  43. Leach DL, Viets JG, Kozlowski A, Kibitlewski S (1996) Geology, geochemistry, and genesis of the Silesia–Krakow zinc-lead district, southern Poland. In: Sangster DF (eds) Carbonate-hosted lead-zinc deposits. Society of Economic Geologists, 75th Anniversary Volume, Special Publication 4:144–170Google Scholar
  44. Leach DL, Bradley D, Lewchuk MT, Symons DT, de Marsily G, Brannon J (2001) Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Miner Depos 36:711–740CrossRefGoogle Scholar
  45. Libowitzky E, Kohler T, Armbruster T, Rossman GR (1997) Proton disorder in dehydrated hemimorphite; IR spectroscopy and X-ray structure refinement at low and ambient temperatures. Eur J Mineral 9:803–810Google Scholar
  46. Machel HG, Mason RA, Mariano AN, Mucci A (1991) Causes and emission of luminescence in calcite and dolomite. In: Baker CE, Kopp OC (eds) Luminescence microscopy and spectroscopy – qualitative and quantitative applications. Society for Sedimentary Geology, Short Course 25:9–25Google Scholar
  47. McDonald WS, Cruickshank DWJ (1967) Refinement of the structure of the hemimorphite. Zeitschrift für Kristallographie 124:180–191CrossRefGoogle Scholar
  48. Migoń P (2007) Geomorphology of granite terrains in Poland. In: Granitoids in Poland, AM Monograph No.1: 355–366Google Scholar
  49. Migoń P, Lidmar-Bergström K (2001) Weathering mantles and their significance for geomorphological evolution of central and northern Europe since the Mesozoic. Earth Sci Rev 56:285–324CrossRefGoogle Scholar
  50. Narkiewicz M (1993) Cathodoluminescence study of the ore-bearing and related dolostones in the Triassic of the Silesian–Krakow district. Geol Q 37:265–278Google Scholar
  51. Nieć M, Blajda R, Niedzielski B (1993) Zinc-lead ore deposit in Lower Triassic (Roethian) dolomites at Bolesław (Olkusz region, Poland). Geol Q 37:157–174Google Scholar
  52. Niskiewicz J (2000) The Szklary Massif nickel-bearing weathering cover. Geologica Sudetica 33:107–130Google Scholar
  53. Osman AEM (1989) Smithsonite in the oxidation zone of the Upper Silesia Zn–Pb ore deposits (Orzel Bialy Mine, Bytom Area), Poland. Mineral Pol 20:57–68Google Scholar
  54. Ostrowicki B (1965) Nickel minerals of the weathering zone of serpentinites at Szklary (Lower Silesia). Prace Mineralogiczne, Polska Akademia Naukowe 1:1–92Google Scholar
  55. Palache C, Berman, H Frondel C (1951) The system of mineralogy of James. Dwight Dana and Edward Salisbury Dana. Yale University, vol. II: 539 ppGoogle Scholar
  56. Panek S, Szuwarzynski M (1974) Rudy utlenione cynku w zlozu kopalni Matylda. Rudy i Metale Niezelazne 19:71–74Google Scholar
  57. Panek S, Szuwarzynski M (1975) Fossil sinkholes with galena mineralization in the vicinity of Chrzanów (Krakow–Silesian region). Rocznik Polskie Towarzystwo Geologiczne 45:177–189Google Scholar
  58. Panek S, Szuwarzynski M (1976) O przedtortonskiej dolinie erozyjnej wypelnionej osadami trzeciorzedowymi w okolicach a (translated title: A pre-Tortonian valley with Tertiary fill near Chrzanów). Annales de la Société Géologique de Pologne 46:503–523Google Scholar
  59. Polish Minerals Yearbook (2007) Bilans zasobow kopalin I wod podziemnych w Polsche. Panstwowy Instytut Geologiczny (PIG) ed., Warszawa: 449 ppGoogle Scholar
  60. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified micro-volumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum Press, New York, pp 31–75Google Scholar
  61. Radwanek-Bak B (1982) Zasieg glebokosciowy strefy utlenienia w zlozu rud Zn–Pb Boleslaw. Rudy i Metale Niezelazne 27:220–225Google Scholar
  62. Radwanek-Bak B (1983) Charakterystyka petrograficzna utlenionych rud cynku ze zloz obszaru Boleslawia i Olkusza. Rocznik Polskie Towarzystwo Geologiczne 53:235–254Google Scholar
  63. Radwanski A (1968) Transgresja dolnego tortonu na obszarze wyzyny Miechowskiej i Krakowskiej (translated title: Lower Tortonian transgression in the Miechow and Kracow uplands). Acta Geol Pol 18:387–440Google Scholar
  64. Reichert J, Borg G (2008) Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol Rev 33:134–151CrossRefGoogle Scholar
  65. Rosenbaum J, Sheppard SMF (1986) An isotope study of siderites, dolomites and ankerites at high temperature. Geochim Cosmochim Acta 50:1147–1150CrossRefGoogle Scholar
  66. Rosenberg PE, Champness PE (1989) Zincian dolomites and associated carbonates from the Warynski Mine, Poland; an AEM investigation. Am Mineral 74:461–465Google Scholar
  67. Różkowski A, Rudzinska T, Bukowy S (1979) Thermal brines as a potential source of the ore mineralization of the Silesia–Cracow Area. Prace Państwowego Instytutu Geologicznego 95:59–85Google Scholar
  68. Sass-Gustkiewicz M (1996) Internal sediments as a key to understanding the hydrothermal karst origin of the Upper Silesian Zn–Pb ore deposits. In: Sangster DF (eds) Carbonate-hosted lead-zinc deposits. Society of Economic Geologists, Special Publication 4:171–181Google Scholar
  69. Sass-Gustkiewicz M, Dzulyński M (1998) Comments on the origin of stratabound Zn–Pb ores in the Upper Silesia, Poland. Ann Soc Geol Pol 68:267–278Google Scholar
  70. Sass-Gustkiewicz M, Dzulyński M, Ridge JD (1982) The emplacement of zinc–lead sulfide ores in the Upper Silesian district—a contribution to the understanding of Mississippi Valley-type deposits. Econ Geol 77:392–412CrossRefGoogle Scholar
  71. Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Petrol 57:967–975Google Scholar
  72. Smakowski T, Strzelska-Smakowska B (2005) The calamine ores from the Silesia–Krakow ore province (Poland). ESF Exploratory Workshop Nonsulfide Zn–Pb ores, 21th–23th April, 2005, Iglesias, Italy, Abstract: 35–36Google Scholar
  73. Sobczynski P, Szuwarzynski M, Wojnar E (1978) Formy wystepowania mineralizacji w niecce Chrzanowskiej. Prace Państwowego Instytutu Geologicznego 83:185–192Google Scholar
  74. Swart PK, Burns SJ, Leder JJ (1991) Fractionation of the stable isotopes of oxygen and carbon during reaction of calcite with phosphoric acid as a function of temperature and methods. Chem Geol 86:89–96Google Scholar
  75. Symons DTA, Sangster DF, Leach DL (1995) A Tertiary age from paleomagnetism for Mississipi Valley-type zinc–lead mineralization in Upper Silesia, Poland. Econ Geol 90:782–794CrossRefGoogle Scholar
  76. Szuwarzynski M (1978) Eluwialne i supergeniczne kruszce w utworach trzeciorzedowych z okolic Chrzanowa. Rudy i Metale Niezelazne 23:345–349Google Scholar
  77. Szuwarzynski M (1993) The lead and zinc ore deposits in the vicinity of Chrzanów. Geol Q 37(2):209–228Google Scholar
  78. Viets JG, Hofstra AH, Emsbo P (1996) The composition of fluid inclusions in ore and gangue minerals from Mississippi Valley-type Zn–Pb deposits of the Krakow–Silesian region of southern Poland: Genetic and environmental implications; In: Gorecka E, Leach DL, Kozlowski A (eds) Carbonate hosted zinc-lead deposits in the Silesian–Krakow area, Poland. Prace Państwowego Instytutu Geologicznego: 166–181Google Scholar
  79. Wilk Z (1989) Hydrogeological problems of the Krakow–Silesia Zn–Pb ore deposits. In: Bosak P, Ford DC, Glazek J, Horacek I (eds) Paleokarst, a systematic and regional review. Developments in Earth Surface Processes: 513–531Google Scholar
  80. Wyczolkowski J (1974) Stratygrafia piaskowaca pstrego i dolnego wapienia muszlowego polnocno-wschodniego obrzezenia Gornoslaskiego Zaglebia Weglowego w swietle badan paleogeograficznych i sedymentologicznych. Biuletyn Państwowego Instytutu Geologicznego 278:71–114Google Scholar
  81. Yapp CJ (1997) An assessment of isotopic equilibrium in goethites from a bog iron deposit and a lateritic regolith. Chem Geol 135:159–171CrossRefGoogle Scholar
  82. Zabinski W (1958) Ferrogalmei (monheimite-galmei) from Katy near Chrzanów. Bulletin of the Academy of Polish Science, Series Science Chemistry, Geology, Geography 6:389–393Google Scholar
  83. Zabinski W (1959) Zincian dolomite from Warynski mine, Upper Silesia. Bulletin of the Academy of Polish Science, Series Science Chemistry, Geology, Geography 7:355–358Google Scholar
  84. Zabinski W (1960) Charakterystyka mineralogiczna strefy utlenienia slasko-krakowskich zloz kruszcow cynku i olowiu. Prace Państwowego Instytutu Geologicznego 1:7–99Google Scholar
  85. Zabinski W (1980) Zincian dolomite: the present state of knowledge. Mineral Pol 2:9–31Google Scholar
  86. Zabinski W (1986) Zincian dolomite: the present state of knowledge. A supplement to Mineral Pol 17:69–71Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Vito Coppola
    • 1
  • Maria Boni
    • 1
    • 4
    Email author
  • H. Albert Gilg
    • 2
  • Bozena Strzelska-Smakowska
    • 3
  1. 1.Dipartimento di Scienze della TerraUniversità di Napoli “Federico II”NapoliItaly
  2. 2.Lehrstuhl für IngenieurgeologieTechnische Universität MünchenMunichGermany
  3. 3.Academy of Mining and MetallurgyCracowPoland
  4. 4.Geologisch-Paläontologisches InstitutUniversität HeidelbergHeidelbergGermany

Personalised recommendations