Advertisement

Mineralium Deposita

, Volume 44, Issue 2, pp 221–231 | Cite as

Oxygen isotopes composition of sapphires from the French Massif Central: implications for the origin of gem corundum in basaltic fields

  • Gaston Giuliani
  • Anthony Fallick
  • Daniel Ohnenstetter
  • Guy Pegere
Article

Abstract

Alluvial and colluvial gem sapphires are common in the basaltic fields of the French Massif Central (FMC) but sapphire-bearing xenoliths are very rare, found only in the Menet trachytic cone in Cantal. The O-isotope composition of the sapphires ranges between 4.4 and 13.9‰. Two distinct groups have been defined: the first with a restricted isotopic range between 4.4 and 6.8‰ (n = 22; mean δ18O = 5.6 ± 0.7‰), falls within the worldwide range defined for blue-green-yellow sapphires related to basaltic gem fields (3.0 < δ18O < 8.2‰, n = 150), and overlaps the ranges defined for magmatic sapphires in syenite (4.4 < δ18O < 8.3‰, n = 29). A second group, with an isotopic range between 7.6 and 13.9‰ (n = 9), suggests a metamorphic sapphire source such as biotite schist in gneisses or skarns. The δ18O values of 4.4–4.5‰ for the blue sapphire-bearing anorthoclasite xenolith from Menet is lower than the δ18O values obtained for anorthoclase (7.7–7.9‰), but suggest that these sapphires were derived from an igneous reservoir in the subcontinental spinel lherzolitic mantle of the FMC. The presence of inclusions of columbite-group minerals, pyrochlore, Nb-bearing rutile, and thorite in these sapphires provides an additional argument for a magmatic origin. In the FMC lithospheric mantle, felsic melts crystallized to form anorthoclasites, the most evolved peraluminous variant of the alkaline basaltic melt. The O-isotopic compositions of the first group suggests that these sapphires crystallized from felsic magmas under upper mantle conditions. The second group of isotopic values, typified for example by the Le Bras sapphire with a δ18O of 13.9‰, indicates that metamorphic sapphires from granulites were transported to the surface by basaltic magma.

Keywords

France French Massif Central Basalt Oxygen isotopes Sapphires 

Notes

Acknowledgements

We thank L. Groat for constructive review and an anonymous reviewer for critical recommendations, as well as B. Lehmann and R. P. Moritz for helpful comments. The authors wish to thank Drs. J-P. Lorand, G. Carlier, and P.J. Chiappero from the Muséum National d’Histoire Naturelle of Paris (UMR 7160) for providing samples from the Lacroix, Pascal, and Vésignié collections. We are also very grateful to Prof. Forestier, and Mr. Germain who supplied sapphires and xenolith samples from different localities of the French Massif Central. Thanks to Dr. Burnard (CRPG/CNRS) for English corrections. This work has been supported by IRD, CRPG/CNRS, and SUERC.

References

  1. Baker JA, Macpherson CG, Menzies MA, Thirlwall MF, Al-Kadasi M, Mattey D (2000) Resolving crustal and mantle contributions to continental flood volcanism, Yemen: constraints from mineral oxygen isotope data. J Petrol 41:1805–1820CrossRefGoogle Scholar
  2. Brousse R, Varet J (1966) Les trachytes du Mont-Dore et du Cantal septentrional et leurs enclaves. Bull Soc Géol France VIII(7):246–262Google Scholar
  3. Carbonnel J-P, Duplaix S, Selo M (1973) Géochronologie par traces de fission des zircons et par K-Ar des andésites basaltiques d’Espaly (Haute Loire). Position du Villafranchien régional et évolution magmatique du Sud-Est du Massif Central français. Contrib Mineral Petrol 40:215–224CrossRefGoogle Scholar
  4. Chazot G, Lowry D, Menzies M, Mattey D (1997) Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochim Cosmochim Acta 61:161–169CrossRefGoogle Scholar
  5. Chualaowanich T, Sutthirat C, Harzenberger C, Pisthua-Arnond V (2005) Another constraint on Thai-corundum genesis: new evidence from ruby-bearing xenoliths from the eastern gem field, Thailand. In: International Conference on Geology, Geochronology and Mineral Resources of Indochina (GEOINDO 2005), Khon Kaen, pp. 345Google Scholar
  6. Coenraads RR (1992) Sapphires and rubies associated with volcanic provinces: inclusions and surface features shed new light on their origin. Austral Gemmol 54:70–78Google Scholar
  7. Coenraads RR, Sutherland FL, Kinny PD (1990) The origin of sapphires: U-Pb dating of zircon inclusions sheds new light. Mineral Mag 54:113–122CrossRefGoogle Scholar
  8. Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583CrossRefGoogle Scholar
  9. Eiler JM, Farley KA, Valley JW, Hauri E, Craig H, Hart SR, Stolper EM (1997) Oxygen isotope variations in ocean island basalt phenocrysts. Geochim Cosmochim Acta 61:2281–2293CrossRefGoogle Scholar
  10. Forestier FH (1952) Découverte de pegmatites à corindon dans la série crystallophylienne de la Haute Vallée de l’Allier en Haute Loire. Rev Sci Nat Auvergne 18:69–70Google Scholar
  11. Forestier FH (1993) Histoire de l’un des gisements de gemmes le plus anciennement connu d’Europe occidentale: saphirs, grenat, et hyacinthes du Puy en Velay. Cahiers de la Haute Loire 43:81–148Google Scholar
  12. Forestier FH, Lasnier B (1969) Découverte de niveaux d’amphibolites à pargasite, anorthite, corindon et saphirine dans les schistes cristallins de la vallée du Haut Allier. Existence du faciès granulite dans le Massif Central Français. Contrib Mineral Petrol 23:194–235CrossRefGoogle Scholar
  13. Gaillou E (2003) Les saphirs du Massif Central: étude minéralogique des saphirs du Sioulot, du Mont Coupet et du Menoyre. Détermination de leur origine. Mémoire de DEA, Université Blaise Pascal, Clermont-Ferrand, France, p 45Google Scholar
  14. Garnier V, Ohnenstetter D, Giuliani G, Fallick AE, Phan Trong P, Hoang Quang V, Pham Van L, Schwarz D (2005) Age and genesis of sapphires from the basaltic province of Dak Nong, Southern Vietnam. Mineral Mag 69:21–38CrossRefGoogle Scholar
  15. Giuliani G, Fallick AE, Garnier V, France-Lanord Ch, Ohnenstetter D, Schwarz D (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology 33:249–252CrossRefGoogle Scholar
  16. Giuliani G, Fallick AE, Rakotondrazafy M, Ohnenstetter D, Andriamamonjy A, Rakotosamizanany S, Ralantoarison Th, Razanatseheno M, Dunaigre Ch, Schwarz D (2007a) Oxygen isotope systematics of gem corundum deposits in Madagascar: relevance for their geological origin. Miner Deposita 42:251–270CrossRefGoogle Scholar
  17. Giuliani G, Ohnenstetter D, Garnier V, Fallick AE, Rakotondrazafy M, Schwarz D (2007b) The geology and genesis of gem corundum deposits. In: Raeside ER (ed) Geology of gem deposits, Mineralogical Association of Canada, Short Course Series 37. Yellowknife, Canada, pp 23–78Google Scholar
  18. Graham IT, Sutherland FL, Webb GB, Fanning CM (2004) Polygenetic corundums from new South Wales gemfields. In: Khanchuk AI, Gonevchuck GA, Mitrokhin AN, Simanenko IF, Cook NJ, Seltmann R (eds) Metallogeny of the Pacific Northwest: tectonics, magmatism and metallogeny of active continental margins. Dalnauka, Vladivostok, Russia, pp 336–339Google Scholar
  19. Graham IT, Sutherland FL, Khin, Nechaev V, Khanchuk A (2008) Advances in our understanding of the gem corundum deposits of the West pacific continenetal margines intraplate basaltic fields. Ore Geol Rev 34:200–215CrossRefGoogle Scholar
  20. Guo J, O’Reilly SY, Griffin WL (1996) Corundum from basaltic terrains: a mineral inclusion approach to the enigma. Contrib Mineral Petrol 22:368–386CrossRefGoogle Scholar
  21. Hentschel G (1987) Die mineralien der Eifelvulkane. Lapis Monographie p 176Google Scholar
  22. Jenkin GRT, Linklater Cl, Fallick AE (1999) Modelling of mineral δ18O values in an igneous aureole: closed-system model predicts apparent open-system δ18O values. Geology 19:1185–1188CrossRefGoogle Scholar
  23. Khin Zaw, Sutherland FL, Dellapasqua F, Ryan CG, Tzen-Fu Yui, Mernagh TP, Duncan D (2006) Contrasts in gem corundum characteristics, eastern Australian basaltic fields: trace elements, fluid/melt inclusions and oxygen isotopes. Mineral Mag 70:617–634Google Scholar
  24. Kornprobst J, Bouiller R, Couturié JP, Feraud J (1978) Carte géologique de la France (1/50.000), feuille de Cayres (XXVII-36), BRGMGoogle Scholar
  25. Kornprobst J, Piboule M, Roden M, Tabit A (1990) Corundum-bearing garnet clinopyroxenites at Beni Bousera (Morocco): original plagioclase-rich gabbros recrystallized at depth within the mantle. J Petrol 31:717–745Google Scholar
  26. Krzemnicki MS, Hänni HA, Guggenheim R, Mathys D (1996) Investigations on sapphires from an alkali basalt, South West Rwanda. J Gemmol 25:90–106Google Scholar
  27. Lacroix A (1890) Sur les enclaves du trachyte de Menet (Cantal), sur leur modification et leur origine. C R Acad Sci 111:1003Google Scholar
  28. Lacroix A (1901) Corindon. In: Minéralogie de la France et de ses colonies. Librairie polytechnique Baudry et Cie, Paris, vol III, pp 237–243Google Scholar
  29. Lasnier B (1977) Persistance d’une série granulitique au cœur du Massif Central Français (Haut Allier) - Les termes basiques, ultrabasiques et carbonatés. Thèse d’Etat Université de Nantes, France, p 351Google Scholar
  30. Lawson AC (1901) Plumasite, an oligoclase-corundum rock near Sapanish Peak, California. Bull Dep Geol Univ Calif 3:219–229Google Scholar
  31. Limkatrun P, Khin Zaw, Ryan CG, Mernagh TP (2001) Formation of the Denchai gem sapphires, northern Thailand: evidence from mineral chemistry and fluid/melt inclusion characteristics. Mineral Mag 65:725–735CrossRefGoogle Scholar
  32. Mattey D, Lowry D, Macpherson CG (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  33. Mergoil J, Boivin B, Blès JL, Cantagrel JM, Turland M (1993) Le Velay. Son volcanisme et les formations associées. Notice de la carte au 1/000.000, Géologie de la France, n°3Google Scholar
  34. Merle O, Michon L (2001) The formation of the West European rift: a new model as exemplified by the Massif Central area. Bull Soc Géol Fr 172:213–221CrossRefGoogle Scholar
  35. Merle O, Michon L, Camus G, De Goer A (1998) L’extension oligocène sur la transversale septentrionale du rift du Massif central. Bull Soc Géol Fr 169:615–626Google Scholar
  36. Oakes GM, Barron LM, Lishmund SR (1996) Alkali basalts and associated volcaniclastic rocks as a source of sapphire in eastern Australia. Austr J Earth Sci 43:289–298CrossRefGoogle Scholar
  37. Pegere G (1994) Le Mont-Coupet dans le volcanisme de Saint-Georges-D’Aurac, Haute-Loire, sa magmatologie, sa faune fossile, ses pierres gemmes. In: Almanach de Brioude, Haute-Loire, France pp 193–211Google Scholar
  38. Pin Ch, Monchoux P, Paquette JL, Azambre B, Wang RC, Martin RF (2006) Igneous albitite dikes in orogenic lherzolites, western Pyrénées, France: a possible source for corundum and alkali feldspar xenocrysts in basaltic terranes. II. Geochemical and petrogenetic considerations. Can Mineral 44:837–850CrossRefGoogle Scholar
  39. Poliakov VB, Ustinov VI (1997) Isotope equilibrium constants (β18O-factors) of corundum. Geochim Inter 35:897–903Google Scholar
  40. Rakotosamizanany S (2003) Les gisements de rubis de Soamiakatra: caractères minéralogiques – gemmologiques—conditions de formation (au Sud d’Antanifotsy, Madagascar). MSc thesis Master, University of Antananarivo, Madagascar p 74Google Scholar
  41. Saminpanya S, Manning DAC, Droop GTR, Henderson CMB (2003) Trace elements in Thai gem corundums. J Gemmol 28:399–415Google Scholar
  42. Schwarz D, Kanis J, Schmetzer K (2000) Sapphires from Antsiranana Province, Northern Madagascar. Gems & Gem 36:216–233Google Scholar
  43. Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotopes ratios in silicates and oxides. Geochim Cosmochim Acta 54:1353–1357CrossRefGoogle Scholar
  44. Simonet C (2000) Géologie des gisements de saphir et de rubis. L’exemple de la John Saul mine, Mangari, Kenya. Thèse de Doctorat, Université de Nantes, France, p 349Google Scholar
  45. Sutherland FL (1996) Alkaline rocks and gemstones, Australia. Austr J Earth Sci 43:323–343CrossRefGoogle Scholar
  46. Sutherland FL, Fanning CM (2001) Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K-Ar ages and zircon fission track and U-Pb isotope dating. Austr J Earth Sci 48:221–237CrossRefGoogle Scholar
  47. Sutherland FL, Schwarz D (2001) Origin of gem corundums from basaltic fields. Austral Gemmol 21:30–33Google Scholar
  48. Sutherland FL, Hoskin PWO, Fanning CM, Coenraads RR (1998) Models of corundum origin from alkali basaltic terrains: a reappraisal. Contrib Mineral Petrol 133:356–372CrossRefGoogle Scholar
  49. Sutherland FL, Graham IT, Pogson RE, Schwarz D, Webb GB, Coenraads RR, Fanning CM, Hollis JD, Allen TC (2002) The Tumbarumba basaltic gem field, New South Wales, In: Relation to sapphire-ruby deposits of Eastern Australia. Records Austr Museum 54:215–248Google Scholar
  50. Sutthirat C, Saminpanya S, Droop GTR, Henderson CMB, Manning DAC (2001) Clinopyroxene-corundum assemblages from alkali basalt and alluvium, eastern Thailand: constraints on the origin of Thai rubies. Mineral Mag 65:277–295CrossRefGoogle Scholar
  51. Upton BGJ, Hinton RW, Aspen P, Finch A, Valley JW (1999) Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. J Petrol 40:935–956CrossRefGoogle Scholar
  52. Yui TF, Khin Zaw, Limkatrun P (2003) Oxygen isotope composition of the Denchai sapphire, Thailand; a clue to its enigmatic origin. Lithos 67:153–161CrossRefGoogle Scholar
  53. Yui TF, Wu C-M, Limkatrun P, Sricharn W, Boonsoong A (2006) Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos 86:197–211CrossRefGoogle Scholar
  54. Zheng YF (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gaston Giuliani
    • 1
    • 2
  • Anthony Fallick
    • 3
  • Daniel Ohnenstetter
    • 2
  • Guy Pegere
    • 4
  1. 1.Institut de Recherche pour le Développement (UR154), LMTGToulouseFrance
  2. 2.CRPG, Nancy-Université, CNRSVandœuvre-lès-NancyFrance
  3. 3.Isotope Geosciences UnitScottish Universities Environmental Research Centre, East KilbrideGlasgowUK
  4. 4.BrioudeFrance

Personalised recommendations