Mineralium Deposita

, 44:99

The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization

  • Bohdan Kříbek
  • Karel Žák
  • Petr Dobeš
  • Jaromír Leichmann
  • Marta Pudilová
  • Miloš René
  • Bohdan Scharm
  • Marta Scharmová
  • Antonín Hájek
  • Daniel Holeczy
  • Ulrich F. Hein
  • Bernd Lehmann
Article

Abstract

Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.

Keywords

Uranium Bohemian Massif Rožná Czech Republic 

References

  1. Anderson EB, Ivanov PA, Komínek J (1988) Ore metasomatism at the uranium veins of the Rožná deposit. Geol Hydrometal Uranium 12:70–88 (in Czech with English summary)Google Scholar
  2. Arapov JA, Bojcov VJ, Česnokov NI, Djakonov AV, Halbrštát J, Jakovjenko AM, Kolek M, Komínek J, Kozyrev VN, Kremčukov GA, Lažanský M, Milovanov V, Nový C, Šorf F (1984) Uranium deposits of the Czechoslovakia. Czechoslovak Uranium Industry, Prague, p 420 (in Czech with English summary)Google Scholar
  3. Bakker RJ, Diamond LW (2000) Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry. Geochim Cosmochim Acta 64:1753–1764CrossRefGoogle Scholar
  4. Bodnar RJ, Vityk MO (1995) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Short course of the working group “Inclusion in Minerals”. Virginia Polytechnic Institute, Blacksburg, VA, pp 117–130Google Scholar
  5. Borisenko AS (1977) Cryotechnic methods for the determination of fluid inclusions salts in minerals. Geol Geofiz 8:16–27 (in Russian)Google Scholar
  6. Brandmayr M, Dallmeyer RD, Handler R (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria)—implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116CrossRefGoogle Scholar
  7. Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965Google Scholar
  8. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  9. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  10. Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates. Geochim Cosmochim Acta 27:43–52CrossRefGoogle Scholar
  11. Cole DR, Ripley EM (1998) Oxygen isotope fractionation between chlorite and water from 170–350°C: A preliminary assessment based on partial exchange and fluid/rock experiments. Geochim Cosmochim Acta 63:449–457CrossRefGoogle Scholar
  12. Cuney M, Leroy J, Molina P (1989) Metalogenesis in the French part of the Variscan orogen. Part 1. U-preconcentration in the pre-Variscan and Variscan formations—a comparison with Sn, W and Au. Tectonophysics 117:39–57Google Scholar
  13. Deer WA, Howie RA, Zussman J (1964) Rock-forming minerals. Volume 3. Sheet slilicates. Longman, LondonGoogle Scholar
  14. Dobeš P, Žák K, Kříbek B (2001) Fluid inclusion and stable isotope study of the Rožná uranium deposit, Czech Republic. In: Noronha F, Dória A, Guedes A (eds) ECROFI XVI, European Current Research on Fluid Inclusions, Porto 2001, Abstracts, Universidade do Porto, pp 115–117Google Scholar
  15. Evert L, Shock DC, Sassani C, Betz H (1997) Uranium in geologic fluids: Estimates of standard partial molar properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim Cosmochim Acta 61:4245–4266CrossRefGoogle Scholar
  16. Franců J, Sýkorová I, Franců E, Šafanda J, Malý L (1998) Vitrinite reflectance of coals in the Boskovice Furrow as related to thermal and burial history. In: Pešek J, Opluštil O (eds) VIII. Coal Geology Conference, Abstracts, Charles University, Prague, pp 28Google Scholar
  17. Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoires 32, pp 334–343Google Scholar
  18. French BM (1966) Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressure. Rev Geophys 4:223–253CrossRefGoogle Scholar
  19. Frost BR (1979) Mineral equilibria involving mixed-volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Am J Sci 279:1033–1059Google Scholar
  20. Fuchs G (1986) Zur Diskussion um den Deckenbau der Boehmischen Masse. Jahrb Geol Bundesanst 129:41–49Google Scholar
  21. Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67CrossRefGoogle Scholar
  22. Grinenko VA (1962) Preparation of sulfur dioxide for isotopic analyses. Zhurnal Neorganiceskoi Chimii 7:2479 (in Russian)Google Scholar
  23. Handler R, Brandmayr M, Dallmeyer RD, Wallbrecher E (1991) Age and kinematics of shear zones in the southern Bohemian Massif. In: Anonymous (ed) Sixth Meeting of the European Union of Geosciences, Terra abstracts 3. Blackwell Scientific, Oxford, pp 206Google Scholar
  24. Hecht L, Cuney M (2000) Hydrothermal alternation of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Miner Depos 35:791–795CrossRefGoogle Scholar
  25. Hein UF (1993) Synmetamorphic Variscan siderite mineralization of the Rhenish Massif, Central Europe. Mineral Mag 57:451–467CrossRefGoogle Scholar
  26. Hein UF, Lehmann B, Kříbek B, René M (2002) Evolution of ore-forming fluids along the Rožná-Olší shear zone, Bohemian massif, Czech Republic: implication for local uranium deposition and comparison with U-mineralization at Schlema, Erzgebirge, Germany. In: Kříbek B, Zeman J (eds) Uranium deposits: from their genesis to their environmental aspects. Proceedings of the International Workshop, Czech Geological Survey, Prague, pp 61–64Google Scholar
  27. Hendel EM, Hollister LS (1981) An empirical solvus for CO2–H2O–2.6 wt. % salt. Geochim Cosmochim Acta 45:225–228CrossRefGoogle Scholar
  28. Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292CrossRefGoogle Scholar
  29. Jensen KA, Ewing RC (2001) The Okélobondo natural fission reactor, southeast Gabon: Geology, mineralogy, and retardation of nuclear-reaction products. Geol Soc Amer Bull 113:32–62CrossRefGoogle Scholar
  30. Johan Z, Kvaček M (1971) La bukovite, Cu3 + xTl2FeSe4 − x, une nouvelle espéce minérale. Bull Soc Géol Mineral Crystallogr 94:529–533Google Scholar
  31. Johan Z, Kvaček M, Picot P (1976) Petrovicite, Cu3HgPbBiSe5, a new mineral. Bull Soc Géol Mineral Crystallogr 99:310–313Google Scholar
  32. Johan Z, Kvaček M, Picot P (1978) La sabatierite, un nouveau seléniure de cuivre et de thallium. Bull Soc Géol Mineral Crystallogr 99:310–313Google Scholar
  33. Jowett EC (1991) Fitting iron and magnesium into hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting, Program with Abstracts, Toronto, A62, pp 16Google Scholar
  34. Kapusta Y, Steinitz G, Allerman A, Sandler A, Kotlarsky P, Nagler A (1997) Monitoring the deficit of Ar-39 in irradiated clay fractions and glauconites: modelling and analytical procedure. Geochim Cosmochim Acta 61:4671–4678CrossRefGoogle Scholar
  35. Kotková J, Schaltegger U, Leichmann J (2003) 338–335 Ma old intrusion in the E Bohemian Massif—a relict of the orogen-wide durbachitic magmatism in European Variscides. J Czech Geol Soc 48:80–81Google Scholar
  36. Kříbek B, Hájek A (eds) (2005) The Rožná uranium deposit. Czech Geological Survey, Prague, p 163 (in Czech with English summary)Google Scholar
  37. Kříbek B, Hladíková J, Holeczy D (2002) Anhydrite-bearing rocks from the Rožná district (Moldanubian zone, Czech Republic: high-grade metamorphosed exhalites? Miner Depos 37:465–479Google Scholar
  38. Kříbek B, Hladíková J, Žák K, Bendl M, Pudilová M, Uhlík Z (1996) The barite-hyalophane sulfidic ores at Rožná, Bohemian Massif, Czech Republic: metamorphosed black shale-hosted submarine exhalative mineralization. Econ Geol 91:14–35Google Scholar
  39. Kříbek B, Žák K, Spangenberg J, Jehlička J, Prokeš S, Komínek J (1999) Bitumens in the Late Variscan hydrothermal vein-type uranium deposit of Příbram, Czech Republic: sources, radiation-induced alteration, and relation to mineralization. Econ Geol 94:1093–1114Google Scholar
  40. Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142CrossRefGoogle Scholar
  41. Landais P, Dereppe JM (1985) A chemical study of the carbonaceous material from the Carswell structure. In: Laine R, Alonso D, Šváb M (eds) The Carswell structure. Uranium deposits, Saskatchewan. Geol Assoc Can Spec Pap 29:165–174Google Scholar
  42. Leichmann J, Matula M, Broska I, Holeczy D (2002) Low-degree partial melting of metapelites—another possible implement for selective concentration of uranium: example from the Rožná uranium deposit, Bohemian Massif. In: Kříbek B, Zeman J (eds) Uranium deposits: from their genesis to their environmental aspects. Proceedings of the International Workshop, Czech Geological Survey, Prague, pp 75–78Google Scholar
  43. Leroy J (1984) The episyenitization in uranium deposit in Bernardan (Marche)—comparison with similar deposits of northwestern area of the French Massif Central. Miner Depos 19:26–35CrossRefGoogle Scholar
  44. Leybourne MI, Clark ID, Goodfellow WD (2006) Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water-rock reactions. Chem Geol 231:300–325CrossRefGoogle Scholar
  45. Ludwig F (1980) Calculations of uncertainties of U–Pb isotope data. Earth Planet Sci Lett 46:212–220CrossRefGoogle Scholar
  46. Matté P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  47. Matura A (1984) Das Kristallin am Suedostrand der Boehmischen Masse zwischen Ybbs/Donau und St. Poelten. Jahrb Geol Bundesanst 127:13–27Google Scholar
  48. McCrea JM (1950) The isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  49. Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) A fast reliable inexpensive in-situ dating technique: Electron microprobe ages on monazite. Chem Geol 13:37–53CrossRefGoogle Scholar
  50. Negrel P, Casanova J (2005) comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields. Appl Geochem 20:749–766CrossRefGoogle Scholar
  51. OECD-IAEA (2003) Uranium 2002. OECD Nuclear Energy Agency and International Atomic Energy Agency, Vienna, Paris, p 156Google Scholar
  52. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd edn. Wiley, New York, p 482Google Scholar
  53. Percival JB, Bell K, Torrance JK (1993) Clay mineralogy and isotope geochemistry of the alteration halo at the Cigar Lake uranium deposit. Can J Earth Sci 30:689–704CrossRefGoogle Scholar
  54. Pešek J, Holub V, Jaroš J, Malý L, Martínek K, Prouza V, Spudil J, Tásler R (2001) Geology and mineral deposits of the Upper Palaeozoic limnic bassins of the Czech Republic. Czech Geological Survey, Prague, p 244 (in Czech with English summary)Google Scholar
  55. Potter RW (1979) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the NaCl–H2O. J Res US Geol Surv 5:603–607Google Scholar
  56. Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure des temperatures sous le microscope: L’installation de microthermometrie Chaixmeca. Bull Soc Géol Mineral Crystallogr 99:182–186Google Scholar
  57. Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298CrossRefGoogle Scholar
  58. Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250°C. Contrib Mineral Petrol 150:146–155CrossRefGoogle Scholar
  59. René M (2002) The REE–U–Th distribution in hydrothermally altered rocks at the Rožná uranium deposit, Czech Republic. In: Kříbek B, Zeman J (eds.) Uranium deposits: From their genesis to their environmental aspects. Proceedings of the International Workshop organized by the Czech Group of the IAGOD, Prague, 10–11 September, 2002, Czech Geological Survey, Prague, pp 107–110Google Scholar
  60. René M (2008) Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization. Terra Nova 20:52–58Google Scholar
  61. Rieder M, Cavazzini G, D’yakonov Y, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Clays Clay Miner 46:586–595CrossRefGoogle Scholar
  62. Rubin JN, Henry ChD, Price JG (1993) The mobility of zirconium and other immobile elements during hydrothermal alteration. Chem Geol 110:29–47CrossRefGoogle Scholar
  63. Savin SM, Lee M (1988) Isotopic studies of phyllosilicatess. In: Bailey SW (ed) Hydrous phyllosilicates. Rev Miner 19:189–223Google Scholar
  64. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowitz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92CrossRefGoogle Scholar
  65. Schulmann K, Thompson AB, Jezek J (1999) Crustal thickening and exhumation in the Moldanubian zone. Terra Nostra 99:1Google Scholar
  66. Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448CrossRefGoogle Scholar
  67. Sheppard SMF (1986) Characterization and izotopic variations in natural waters. In: Valley JW, Taylor JHP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineralogical Society of America, Chelsea, pp 165–183Google Scholar
  68. Skoček V, Šmejkal V, Král J, Hladíková J (1977) Isotopic composition of carbonates and sulphates from the Permo-Carboniferous of central Bohemia and the Krkonoše-piedmont Basin. Bull Czech Geol Surv 52:1–11Google Scholar
  69. Stevens RE (1946) A system for calculating analyses of micas and related minerals to end members. Bull Geol Surv USA 950:101–119. Washington D. C.Google Scholar
  70. Sverjensky D (1987) The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits. Econ Geol 82:1130–1141Google Scholar
  71. Suzoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240CrossRefGoogle Scholar
  72. Tajčmanová L, Konopásek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within ma thickened Moldanubian root of the Variscan Belt of Central Europe. J Metamorph Geol 24:119–134CrossRefGoogle Scholar
  73. Thiele O (1976) Zur Tektonik des Waldviertels in Niederoesterreich (suedliche Boehmische Masse). Nova Acta Leopold 45:67–82Google Scholar
  74. Tollmann A (1982) Grossraumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotekton Forsch 64:1–91Google Scholar
  75. Turpin L, Ramboz C, Sheppard-Simon MF (1981) Chemical and isotopic evolution of the fluids in the Sn-W deposit, Panasqueira, Portugal. Terra Cognita, Special Issue, p 42Google Scholar
  76. Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chem Geol 88:85–98CrossRefGoogle Scholar
  77. Van den Kerkhof AM, Thiery R (2001) Carbonic inclusions. Lithos 55:49–68CrossRefGoogle Scholar
  78. Vilhelm S, Bajer B, Hájek A, Halík L, Hejtmánek J, Konopásek R, Chrást M, Křivánek K, Kubeček J, Mach J, Nohál M, Pesch J, Bullová J, Rozhoň V, Šenk M, Uhlík Z, Vokoun J, Žváček B (1984) General evaluation of the uranium reserves at the Rožná-Olší ore field. Czechoslovak Uranium Industry Technical Report 123-84, p 345Google Scholar
  79. Vencelides Z (1991) Sulphide and barite mineralization at the Rožná deposit. MSc Thesis, Charles University, Prague, p 112 (in Czech with English abstract)Google Scholar
  80. Vosteen HD, Weinoldt M (1997) Flüssigkeitseinschlußpetrographie und geochemische Untersuchungen zur Entstehung der Uranlagerstätte Rozna/Tschechische Republik. MSc Thesis, Technische Universität Clausthal, p 125Google Scholar
  81. Wilde AR, Mernagh TP, Bloom MS, Hoffmann ChF (1989) Fluid inclusion evidence on the origin of some Australian unconformity-related uranium deposits. Econ Geol 84:1627–1642Google Scholar
  82. Wilkinson JJ, Jenkin GRT, Fallick AE, Foster RP (1995) Oxygen and hydrogen isotopic evolution of Variscan crustal fluids, south Cornwall, U.K. Chem Geol 123:239–254CrossRefGoogle Scholar
  83. Wilson NSF, Stasiuk LD, Fowler MG (2003) Post-mineralization origin of organic matter in Athabasca unconformity uranium deposits, Saskatchewan, Canada. In: Cuney M (ed) Uranium geochemistry 2003. University H. Poincaré, Nancy, pp 383–384Google Scholar
  84. Žák K, Dobeš P, Kříbek B, Pudilová M, Hájek A, Holeczy D (2001) Evolution of fluid types at the Rožná uranium deposit, Czech Republic. Stable isotope and fluid inclusion study. In: Piestrzyński J (ed) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 109–113Google Scholar
  85. Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrocks at the Igarapé Bahia gold deposit, Carajás, Brasil. Miner Depos 30:30–38CrossRefGoogle Scholar
  86. Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263CrossRefGoogle Scholar
  87. Ziegler PA (1996) Geological atlas of Western and Central Europe. Shell, Hague, p 130Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bohdan Kříbek
    • 1
  • Karel Žák
    • 1
  • Petr Dobeš
    • 1
  • Jaromír Leichmann
    • 2
  • Marta Pudilová
    • 3
  • Miloš René
    • 4
  • Bohdan Scharm
    • 5
  • Marta Scharmová
    • 5
  • Antonín Hájek
    • 6
  • Daniel Holeczy
    • 6
  • Ulrich F. Hein
    • 7
  • Bernd Lehmann
    • 8
  1. 1.Czech Geological SurveyPrague 1Czech Republic
  2. 2.Faculty of SciencesMasaryk UniversityBrnoCzech Republic
  3. 3.Faculty of SciencesCharles UniversityPrague 2Czech Republic
  4. 4.Institute of Rock Structure and MechanicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  5. 5.Jižní 63/19LiberecCzech Republic
  6. 6.Diamo, S. E., Branch GEAMDolní RožínkaCzech Republic
  7. 7.Octavia AGKasselGermany
  8. 8.Institute of Mineralogy and Mineral ResourcesTechnical University of ClausthalClausthal-ZellerfeldGermany

Personalised recommendations