Mineralium Deposita

, 43:575 | Cite as

Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo)

  • Ph. Muchez
  • P. Vanderhaeghen
  • H. El Desouky
  • J. Schneider
  • A. Boyce
  • S. Dewaele
  • J. Cailteux


The stratiform Cu–Co ore mineralisation in the Katangan Copperbelt consists of dispersed sulphides and sulphides in nodules and lenses, which are often pseudomorphs after evaporites. Two types of pseudomorphs can be distinguished in the nodules and lenses. In type 1 examples, dolomite precipitated first and was subsequently replaced by Cu–Co sulphides and authigenic quartz, whereas in type 2 examples, authigenic quartz and Cu–Co sulphides precipitated prior to dolomite and are coarse-grained. The sulphur isotopic composition of the copper–cobalt sulphides in the type 1 pseudomorphs is between −10.3 and 3.1‰ relative to the Vienna Canyon Diablo Troilite, indicating that the sulphide component was derived from bacterial sulphate reduction (BSR). The generation of \({\text{HCO}}_3^ - \) during this process caused the precipitation and replacement of anhydrite by dolomite. A second product of BSR is the generation of H2S, resulting in the precipitation of Cu–Co sulphides from the mineralising fluids. Initial sulphide precipitation occurred along the rim of the pseudomorphs and continued towards the core. Precipitation of authigenic quartz was most likely induced by a pH decrease during sulphide precipitation. Fluid inclusion data from quartz indicate the presence of a high-salinity (8–18 eq. wt.% NaCl) fluid, possibly derived from evaporated seawater which migrated through the deep subsurface. 87Sr/86Sr ratios of dolomite in type 1 nodules range between 0.71012 and 0.73576, significantly more radiogenic than the strontium isotopic composition of Neoproterozoic marine carbonates (87Sr/86Sr = 0.7056–0.7087). This suggests intense interaction with siliciclastic sedimentary rocks and/or the granitic basement. The low carbon isotopic composition of the dolomite in the pseudomorphs (−7.02 and −9.93‰ relative to the Vienna Pee Dee Belemnite, V-PDB) compared to the host rock dolomite (−4.90 and +1.31‰ V-PDB) resulted from the oxidation of organic matter during BSR.


Anhydrite Copperbelt Cu–Co stratiform ore deposits Fluid chemistry Bacterial sulphate reduction Democratic Republic of Congo 



We are grateful to Steve Roberts and Robert Moritz for their constructive reviews and thoughtful suggestions and to Bernd Lehmann for editing this paper. We would like to thank E. Pirard (Université de Liège) for the permission to study borehole 120 from Kamoto. We are grateful to Dr. M. Joachimski of the University of Erlangen for the stable isotope analysis. We thank Herman Nijs for the careful preparation of the numerous thin and polished sections.

This research is financially supported by the research grants G.0585.06 and G.0414.08 of the FWO-Vlaanderen.


  1. Allsopp HL, Ferguson J (1970) Measurements relating to the genesis of the Tsumeb pipe, South West Africa. Earth Planet Sci Lett 9:448–445CrossRefGoogle Scholar
  2. Alonso-Zara AM, Sánchez-Moya Y, Sopeña A, Delgado A (2002) Silicification and dolomitisation of anhydrite nodules in argillaceous terrestrial deposits: an example of meteoric-dominated diagenesis from the Triassic of Central Spain. Sedimentology 49:303–317CrossRefGoogle Scholar
  3. Anderson IK, Ashton JH, Boyce AJ, Fallick AE, Russell MJ (1998) Ore depositional processes in the Navan Zn–Pb deposit, Ireland. Econ Geol 93:535–563Google Scholar
  4. Annels AE (1974) Some aspects of the stratiform ore deposits of the Zambian Copperbelt and their genetic significance. Centenaire Soc Geol Belg 102:431–449Google Scholar
  5. Annels AE (1989) Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi Basin. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geological Association of Canada, Special Paper 36:427–452Google Scholar
  6. Armstrong RA, Master S, Robb LJ (2005) Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. J Afr Earth Sci 42:32–40CrossRefGoogle Scholar
  7. Banks DA, Boyce AJ, Samson IM (2002) Constraints on the origins of fluids forming Irish Zn–Pb–Ba deposits: evidence from the composition of fluid inclusions. Econ Geol 97:471–480CrossRefGoogle Scholar
  8. Bartholomé P (1974) On the diagenetic formation of ores in sedimentary beds, with special reference to Kamoto, Shaba, Zaïre. In: Bartholomé P (ed) Gisements stratiformes et provinces cuprifère. Centenaire de la Sociéte Géologique de Belgique, Liège, pp 203–214Google Scholar
  9. Bartholomé P, Evrard P, Katekesha F, Lopez-Ruiz J, Ngongo M (1972) Diagenetic ore-forming processes at Kamoto, Katanga, Republic of the Congo. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Springer, Berlin, pp 21–41Google Scholar
  10. Batumike MJ, Cailteux JLH, Kampunzu AB (2007) Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock succession, central African Copperbelt. Gondwana Res 11:432–447CrossRefGoogle Scholar
  11. Birck L (1986) Precision K–Rb–Sr isotopic analysis: application to Rb–Sr chronology. Chem Geol 56:73–83CrossRefGoogle Scholar
  12. Brems D (2007) Petrografische, mineralogische en geochemische studie van de Nkana Cu–Co afzetting, Zambia. Unpublished licentiate thesis, K.U.LeuvenGoogle Scholar
  13. Brown AC (2005) Refinements for footwall red-bed diagenesis in the sediment-hosted stratiform copper deposits model. Econ Geol 100:765–771CrossRefGoogle Scholar
  14. Brown AC, Chartrand FM (1983) Stratiform copper deposits and interactions with co-existing atmospheres, hydrospheres, biospheres and lithospheres. Precambrian Res 20:533–542CrossRefGoogle Scholar
  15. Cailteux J (1973) Minerais cuprifères et roches encaissantes à Musoshi, province du Shaba, République du Zaïre. Ann Soc Geol Belg 96:495–521Google Scholar
  16. Cailteux J (1978a) Particularités stratigraphiques et pétrographiques du faisceau inférieur du Groupe des mines au centre de l’arc cuprifère shabien. Ann Soc Geol Belg 100:55–71Google Scholar
  17. Cailteux J (1978b) La succession stratigraphique du C.M.N. (ou R 2.3) au centre de la sous province cuprifère shabienne. Ann Soc Geol Belg 100:73–85Google Scholar
  18. Cailteux J (1994) Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. J Afr Earth Sci 19:279–301CrossRefGoogle Scholar
  19. Cailteux J (1997) Minéralisation à U–Pb–Se–Mo–Ni dans le gisements stratiforme cupro-cobaltifère de Kambove-Ouest (Shaba, Rép. Zaïre). In: Charlet J-M (ed) International Cornet Symposium ‘Strata-bound Copper Deposits and Associated Mineralizations’. Faculté Polytechnique de Mons and Royal Academy of Overseas Sciences, Liège, pp 245–286Google Scholar
  20. Cailteux J, Kampunzu AB (2003) Third workshop of IGCP 450: Proterozoic sediment-hosted base metal deposits of Western Gondwana. Episodes 23:209–213Google Scholar
  21. Cailteux J, Binda PL, Katekesha WM, Kampunzu AB, Intiomale MM, Kapenda D, Kaunda C, Ngongo K, Tshiauka T, Wendorff M (1994) Lithostratigraphical correlation of the Neoproterozoic Roan Supergroup from Shaba (Zaire) and Zambia, in the central African copper–cobalt metallogenic province. In: Kampunzu AB, Lubala RT (eds) Neoproterozoic belts of Zambia, Zaire and Namibia. Journal of African Earth Sciences 19:265–278Google Scholar
  22. Cailteux JLH, Kaputo AK, Kampunzu AB (2003) Structure, lithostratigraphy and Cu–Co mineralization of the Mines Subgroup at Luiswishi, central Africa Copperbelt. In: Cailteux J (ed) Proterozoic sediment-hosted base metal deposits of Western Gondwana, Lubumbashi, pp 103–107Google Scholar
  23. Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158CrossRefGoogle Scholar
  24. Cailteux JLH, Kampunzu AB, Lerouge C (2007) The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the central African Copperbelt, its Cu–Co mineralization, and regional correlations. Gondwana Res 11:414–431CrossRefGoogle Scholar
  25. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  26. Craig JR, Vaughan DJ, Higgins JB (1979) Phase relations in the Cu–Co–S system and mineral associations of the carrolite (CuCo2S4)–linnaeite (Co3S4) series. Econ Geol 74:657–671Google Scholar
  27. Daly MC, Chakroborty SK, Kasolo P, Musiwa M, Mumba P, Naidu B, Namateba C, Ngambi O, Coward MP (1984) The Lufilian arc and Irumide belt of Zambia: results of a geotraverse across their intersection. J Afr Earth Sci 2:311–316CrossRefGoogle Scholar
  28. Dechow E, Jensen ML (1965) Sulphur isotopes of some Central African sulphide deposits. Econ Geol 60:894–941Google Scholar
  29. Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426:95–103CrossRefGoogle Scholar
  30. Dewaele S, Muchez Ph, Vets J, Fernandez-Alonzo M, Tack L (2006) Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J Afr Earth Sci 46:455–469CrossRefGoogle Scholar
  31. El Desouky HA, Muchez Ph, Dewaele S, Boutwood A, Tyler R (2007a) The stratiform copper mineralization of the Lufukwe anticline, Lufilian foreland, Democratic Republic Congo. Geol Belg 10:148–151Google Scholar
  32. El Desouky H, Haest M, Muchez Ph, Dewaele S, Cailteux J, Heijlen W (2007b) Fluid evolution in the Katanga Copperbelt, DRC. In: Andrew CJ et al (ed) Digging deeper. Proceedings of the 9th SGA meeting, Dublin 2007 (Ireland). Irish Association for Economic Geology, Dublin, pp 213–216Google Scholar
  33. Everett CE, Wilkinson JJ, Rye DM (1999) Fracture-controlled fluid flow in the Lower Palaeozoic basement rocks of Ireland: implications for the genesis of Irish-type Zn–Pb deposits. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralization special publication 155. Geological Society, London, pp 247–276Google Scholar
  34. Fallick A, McConville P, Boyce AJ, Burgess R, Kelley SP (1992) Laser microprobe stable isotope measurements on geological materials: some experimental considerations (with special reference to d34S in sulphides). Chem Geol 101:53–61Google Scholar
  35. Fallick AE, Ashton JH, Boyce AJ, Ellam RM, Russell MJ (2001) Bacteria were responsible for the magnitude of the world-class hydrothermal base metal sulphide orebody at Navan, Ireland. Econ Geol 96:885–890CrossRefGoogle Scholar
  36. François A (1974) Stratigraphie, tectonique et minéralisation dans l’arc cuprifère du Shaba. Centenaire de la Société Géologiques de Belgique. Gisements stratiformes et provinces cuprifères. Liège, 79–101Google Scholar
  37. Friedman GM (1965) Terminology of crystallization textures in sedimentary rocks. J Sediment Petrol 35:643–655Google Scholar
  38. Garven G (1995) Continental-scale groundwater flow and geological processes. Annu Rev Earth Planet Sci 23:89–117CrossRefGoogle Scholar
  39. Gleeson SA, Yardley BWD (2003) Surface-derived fluids in basement rocks: inferences from palaeo-hydrothermal systems. J Geochem Explor 78–79:61–65CrossRefGoogle Scholar
  40. Grandia F, Cardellach E, Canals A, Banks DA (2003) Geochemistry of the fluids related to epigenetic carbonate-hosted Zn–Pb deposits in the Maestrat Basin, eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Econ Geol 98:933–954CrossRefGoogle Scholar
  41. Heijlen W, Muchez Ph, Banks DA, Schneider J, Kucha A, Keppens E (2003) Carbonate-hosted Zn–Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ Geol 98:911–932CrossRefGoogle Scholar
  42. Hesse R (1988) Origin of chert: diagenesis of biogenic siliceous sediments. Geosci Canada 15:171–192Google Scholar
  43. Hesse R (1989) Silica diagenesis: origin of inorganic and replacement cherts. Earth-Sci Rev 26:253–284CrossRefGoogle Scholar
  44. Hitzman M, Kirkham R, Broughton D, Thorson J, Selley D (2005) The sediment-hosted stratiform copper ore system. Econ Geol 100th Anniversary Volume. Society of Economic Geology, Tulsa, pp 609–642Google Scholar
  45. Hoy LD, Ohmoto H (1989) Constraints for the genesis of redbed-associated stratiform Cu deposits from sulphur and carbon mass-balance relations. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted Stratiform Copper Deposits. Geological Association of Canada, Special Paper 36:135–149Google Scholar
  46. Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213CrossRefGoogle Scholar
  47. Jacobsen SB, Kaufman AJ (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem Geol 161:37–57CrossRefGoogle Scholar
  48. Kampunzu AB, Cailteux JLH (1999) Tectonic evolution of the Lufilian Arc (Central Africa Copper Belt) during Neoproterozoic pan African orogenesis. Gondwana Res 2:401–421CrossRefGoogle Scholar
  49. Kampunzu AB, Tembo F, Mathies G, Kapenda D, Huntsman-Mapila P (2000) Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan basin, central Africa: implications for Rodinia break up. Gondwana Res 3:125–153CrossRefGoogle Scholar
  50. Kelley SP, Fallick AE (1990) A high precision spatially resolved analysis of d34S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888CrossRefGoogle Scholar
  51. Key RM, Liyungu AK, Njamu FM, Somwe V, Banda J, Mosley PN, Armstrong RA (2001) The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. J Afr Earth Sci 33:503–528CrossRefGoogle Scholar
  52. Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Zenger DH, Dunham JB, Ethington RL (eds) Concepts and models of dolomitisation. The Society of Economic Paleontologists and Mineralogists Special Publication 28:87–110Google Scholar
  53. Lefebvre J-J (1978) Le Groupe de Mwashya, mégacyclthème terminal du Roan (Shaba, Zaïre Sudoriental). I—Approche lithostratigraphique et étude de l’environnement sédimentaire. Ann Soc Geol Belg 101:209–225Google Scholar
  54. Lefebvre J-J (1989) Depositional environment of copper–cobalt mineralization in the Katangan sediments of southeast Shaba, Zaïre. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geological Association of Canada, Special Paper 36:401–426Google Scholar
  55. Lerouge C, Cailteux J, Kampunzu AB, Milesi JP, Fléhoc C (2005) Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC). J Afr Earth Sci 42:173–182CrossRefGoogle Scholar
  56. Lindsay JF, Kruse PD, Green OR, Hawkins E, Brasier MD, Cartlidge J, Corfield RM (2005) The Neoproterozoic–Cambrian record in Australia: a stable isotope study. Precambrian Res 143:113–133CrossRefGoogle Scholar
  57. Machel HG (1987) Some aspects of diagenetic sulphate–hydrocarbon redox-reactions. In: Marshall JD (ed) Diagenesis of sedimentary sequences. Geological Society Special Publication 36:15–28Google Scholar
  58. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175CrossRefGoogle Scholar
  59. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389CrossRefGoogle Scholar
  60. Machel HG, Foght J (2000) Products and depth limits of microbial activity in petroliferous subsurface settings. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 105–120Google Scholar
  61. Master S, Rainaud C, Armstrong RA, Phillips D, Robb LJ (2005) Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J Afr Earth Sci 42:41–60CrossRefGoogle Scholar
  62. McGowan RR, Roberts S, Foster RP, Boyce AJ, Coller D (2003) Origin of the copper–cobalt deposits of the Zambian Copperbelt: an epigenetic view from Nchanga. Geology 31:497–500CrossRefGoogle Scholar
  63. McGowan RR, Roberts S, Boyce AJ (2006) Origin of the Nchanga copper–cobalt deposits of the Zambian Copperbelt. Miner Depos 40:617–638CrossRefGoogle Scholar
  64. Muchez Ph, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27:241–267CrossRefGoogle Scholar
  65. Muchez Ph, Brems D, El Desouky H, Haest M, Vanderhaeghen P, Dewaele S, Heijlen W, Mukumba W (2007) Base metal ore deposit evolution and geodynamics in the Central African Coppernelt. In: Andrew CJ et al (ed) Digging deeper. Proceedings of the 9th SGA meeting, Dublin 2007 (Ireland). Irish Association for Economic Geology, Dublin, pp 209–212Google Scholar
  66. Ngoyi K, Liégeois J-P, Demaiffe D, Dumont P (1991) Age tardi-ubendien (Protérozoïque inférieur) des dômes granitiques de l’arc cuprifère zaïro-zambien. C R Acad Sci Paris 313:83–89Google Scholar
  67. Nielsen P, Swennen R, Keppens E (1994) Multiple-step recrystallization within massive ancient dolomite units: an example from the Dinantian of Belgium. Sedimentology 41:567–584CrossRefGoogle Scholar
  68. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. In: Valley JW, Taylo HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Reviews in Mineralogy 16, Mineralogical Society of America, pp 491–559Google Scholar
  69. Okitaudji LR (1992) Interprétation sédimentologique du Roan (Précambrien supérieur) du Shaba (Zaïre) et place des minéralisations cupro-cobaltifères. J Afr Earth Sci 14:371–386CrossRefGoogle Scholar
  70. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  71. Sassen R, Chinn EW, McCabe C (1988) Recent hydrocarbon alteration, sulphate reduction and formation of elemental sulfur and metal sulfides in salt dome cap rock. Chem Geol 74:57–66CrossRefGoogle Scholar
  72. Selley D, Broughton D, Scott R, Hitzman M, Bull S, Large R, McGoldrick P, Croaker M, Pollington N, Barra F (2005) A new look at the geology of the Zambian Copperbelt. Economic Geology 100th Anniversary Volume. Society of Economic Geology, Tulsa, pp 965–1000Google Scholar
  73. Smith TM, Dorobek SL (1993) Alteration of early-formed dolomite during shallow to deep burial: Mississippian Mission Canyon Formation, central to southwestern Montana. Geol Soc Am Bull 105:1389–1399CrossRefGoogle Scholar
  74. Sweeney MA, Binda PL (1989) The role of diagenesis in the formation of the Konkola Cu–Co orebody of the Zambian Copperbelt. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geological Association of Canada, Special Paper, 36, pp 499–518Google Scholar
  75. Sweeney MA, Turner P, Vaughan DJ (1986) Stable isotope and geochemical studies of the role of early diagenesis in ore formation, Konkola basin, Zambian Copperbelt. Econ Geol 91:1838–1852CrossRefGoogle Scholar
  76. Ulmer-Scholle DS, Scholle PA, Brady PV (1993) Silicification of evaporates in Permian (Guadalupian) back-reef carbonates of the Delaware Basin, West Texas and New Mexico. J Sediment Petrol 63:955–965Google Scholar
  77. Veizer J, Hoefs J (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim Cosmochim Acta 40:1387–1395CrossRefGoogle Scholar
  78. Viets DL, Hofstra AF, Emsbo P (1996) Solute compositions of fluid inclusions in sphalerite from North America and European Mississippi Valley-type ore deposits: ore fluids derived from evaporated seawater. In: Sangster DF (ed) Carbonate-hosted lead–zinc deposits. Society of Economic Geologists Special Publication 4, pp 465–482Google Scholar
  79. Wachter E, Hayes JM (1985) Exchange of oxygen isotopes in carbon-dioxide–phosphoric acid systems. Chem Geol 52:365–374Google Scholar
  80. Williams LA, Crerar DA (1985) Silica diagenesis. II. General mechanisms. J Sediment Petrol 55:312–321Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ph. Muchez
    • 1
  • P. Vanderhaeghen
    • 1
  • H. El Desouky
    • 1
  • J. Schneider
    • 1
    • 2
  • A. Boyce
    • 3
  • S. Dewaele
    • 4
  • J. Cailteux
    • 5
  1. 1.Geodynamics & Geofluids Research Group, Afdeling GeologieK.U.LeuvenLeuvenBelgium
  2. 2.Centre for Archaeological SciencesK.U.LeuvenLeuvenBelgium
  3. 3.Isotope Geoscience UnitSUERCGlasgowUK
  4. 4.Department of Geology and MineralogyRoyal Museum for Central Africa (RMCA)TervurenBelgium
  5. 5.Département Recherche et Développement, EGMFGroupe G. Forrest InternationalLubumbashiDemocratic Republic of Congo

Personalised recommendations