Mineralium Deposita

, Volume 43, Issue 1, pp 1–21

Tectonic configuration of the Apuseni–Banat—Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages

  • Aaron Zimmerman
  • Holly J. Stein
  • Judith L. Hannah
  • Dejan Koželj
  • Kamen Bogdanov
  • Tudor Berza


The Apuseni–Banat–Timok–Srednogorie magmatic–metallogenic belt (ABTS belt), forms a substantial metallogenic province in the Balkan-South Carpathian system in southeastern Europe. The belt hosts porphyry, skarn, and epithermal deposits mined since pre-Roman times. Generally, the deposits, prospects, and occurrences within the belt are linked to magmatic centers of calc-alkaline affinity. Fifty-one rhenium-osmium (Re–Os) ages and Re concentration data for molybdenites define systematic geochronologic trends and constrain the geochemical-metallogenic evolution of the belt in space and time. From these data and additional existing geologic-geochemical data, a general tectonic history for the belt is proposed. Mineralization ages in Apuseni-Banat, Timok, and Panagyurishte (the central district of the larger E–W Srednogorie Zone) range from 72–83, 81–88, and 87–92 Ma, respectively, and clearly document increasing age from the northwestern districts to the southeastern districts. Further, Re–Os ages suggest rapidly migrating pulses of Late Cretaceous magmatic–hydrothermal activity with construction of deposits in ~1 m.y., districts in ~10 m.y., and the entire 1,500 km belt in ~20 m.y. Ages in both Timok and Panagyurishte show systematic younging, while deposit ages in Banat and Apuseni are less systematic reflecting a restricted evolution of the tectonic system. Systematic differences are also observed for molybdenite Re concentrations on the belt scale. Re concentrations generally range from hundreds to thousands of parts per million, typical of subduction-related Cu–Au–Mo–(PGE) porphyry systems associated with the generation of juvenile crust. The geochronologic and geochemical trends are compatible with proposed steepening of subducting oceanic slab and relaxation of upper continental plate compression. Resulting influx of sub-continental mantle lithosphere (SCML) and asthenosphere provide a fertile metal source and heat, while the subducting slab contributes connate and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu–Au–Mo–(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo–Fe–Pb–Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re–Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re–Os ages, from Panagyurishte (~60 km; 92–87 Ma) to Timok (~20 km; 88–81 Ma) to Apuseni-Banat (~5 km; 83–72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic–hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.


Re–Os, molybdenite Copper porphyry Romania Serbia Bulgaria Slab rollback Orogenic collapse 


  1. Aiello E, Bartolini C, Boccaletti M, Gočev P, Karagjuvela J, Kostadinov V, Manetti P (1977) Sedimentary features of the Srednogorie Zone (Bulgaria): an Upper Cretaceous intra-arc basin. Sediment Geol 19:39–68CrossRefGoogle Scholar
  2. Berza T, Constantinescu E, Vlad SN (1998) Upper Cretaceous magmatic series and associated mineralization in the Carpathian–Balkan orogen. Resour Geol 48:291–306CrossRefGoogle Scholar
  3. Bingen B, Stein H (2003) Molybdenite Re–Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth Planet Sci Lett 208:181–195CrossRefGoogle Scholar
  4. Boccaletti M, Manetti P, Peccerillo A (1974a) Hypothesis on the plate tectonic evolution of the Carpatho-Balkan arcs. Earth Planet Sci Lett 23:193–198CrossRefGoogle Scholar
  5. Boccaletti M, Manetti P, Peccerillo A (1974b) The Balkanids as an instance of back-arc thrust belt: possible relation with the Hellenids. Geol Soc Amer Bull 85:1077–1084CrossRefGoogle Scholar
  6. Bogdanov K, Strashimirov S (eds) (2003) Cretaceous porphyry-epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:133Google Scholar
  7. Bojar AV, Neubauer F, Fritz H (1998) Cretaceous to Cenozoic thermal evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophyics 297:229–249CrossRefGoogle Scholar
  8. Bortolotti V, Morroni M, Nicolae I, Pandolfi L, Principi G, Saccani E (2002) Geodynamic implications of Jurassic ophiolites associated with island-arc volcanics, South Apuseni Mountains, Western Romania. Int Geol Rev 44:938–955Google Scholar
  9. Bortolotti V, Morroni M, Nicolae I, Pandolfi L, Principi G, Saccani E (2004) An update of the Jurassic ophiolites and associated calc-alkaline rocks in the South Apuseni Mountains (Western Romania). Ofioliti 29:5–18Google Scholar
  10. Burchfiel BC (1976) Geology of Romania. Geological Society of America Special Publication Series 158:82Google Scholar
  11. Burtman V (1986) Origin of structural arcs of the Carpathian–Balkan region. Tectonophysics 127:245–260CrossRefGoogle Scholar
  12. Carras N, Georgala D (1998) Upper Jurassic to Lower Cretaceous carbonate facies of African affinities in a Peri-European area: Chalkidiki Peninsula, Greece. Facies 38:153–164CrossRefGoogle Scholar
  13. Chambefort I, Moritz R (2006) Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria. Miner Depos 41:259–280CrossRefGoogle Scholar
  14. Ciobanu C, Cook N, Stein H (2002) Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt. Miner Depos 37:541–567CrossRefGoogle Scholar
  15. Clark A, Ullrich T (2004) 40Ar/39Ar age data for andesitic magmatism and hydrothermal activity in the Timok Massif, Eastern Serbia: implications for metallogenetic relationships in the Bor copper–gold subprovince. Miner Depos 39:256–262CrossRefGoogle Scholar
  16. Cloetingh S, Van Wees JD (2005) Strength reversal in Europe’s intraplate lithosphere: transition from basin inversion to lithospheric folding. Geology 33:285–288CrossRefGoogle Scholar
  17. Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta 55:397–401CrossRefGoogle Scholar
  18. Crouch EAC, Webster RK (1963) Choice of the optimum quantity and constitution of the tracer used for isotopic dilution analysis. J Chem Soc 18:118–131CrossRefGoogle Scholar
  19. Csontos L, Nagymarosy A, Horvath F, Kovac M (1992) Tertiary evolution of the intra-Carpathian area—a model. Tectonophysics 208:221–241CrossRefGoogle Scholar
  20. Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimatol Palaeoecol 210:1–56CrossRefGoogle Scholar
  21. Dabovski C, Harkovska A, Kamenov B, Mavrudchiev B, Stanisheva-Vassileva G, Yanev Y (1991) A geodynamic model of the Alpine magmatism in Bulgaria. Geol Balc 21:3–15Google Scholar
  22. de Boorder H, Spakman W, White SH, Wortel MJR (1998) Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth Planet Sci Lett 164:569–575CrossRefGoogle Scholar
  23. Dupont A, Auwera J, Pin C, Marincea Ş, Berza T (2002) Trace element and isotope (Sr, Nd) geochemistry of porphyry- and skarn-mineralizing Late Cretaceous intrusions from Banat, Western South Carpathains, Romania. Miner Depos 37:568–586CrossRefGoogle Scholar
  24. Fanger L, Driesner T, Heinrich CA, von Quadt A, Peycheva I (2001) Elatsite porphyry Cu deposit, Bulgaria: mineralisation, alteration, and structures. In: Mineral deposits at the beginning of the 21st century, Proceedings of the sixth Biennial SGA Meeting 6:527–529Google Scholar
  25. Foose R, Manheim F (1975) Geology of Bulgaria: a review. AAPG Bull 59:303–335Google Scholar
  26. Golonka J (2004) Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381:235–273CrossRefGoogle Scholar
  27. Handler R, Velichkova SH, Neubauer F, Ivanov Z (2004) 40Ar/39Ar age constraints on the timing of the formation of Cu–Au deposits in the Panagyurishte region, Bulgaria. Schweiz. Mineral Petrograph Mitt (Spec. issue GEODE-ABCD) 84/1:119–132Google Scholar
  28. Hannah JL, Stein HJ, Wieser ME, de Laeter JR, Varner M (in press) Mo isotope variations in molybdenite: Vapor transport and Rayleigh fractionation of Mo. GeologyGoogle Scholar
  29. Heumann H (1988) Isotope dilution mass spectrometry. In: Adams F, Gijbels R, Van Grieken R (eds) Inorganic mass spectrometry. Wiley, New York, pp 301–376Google Scholar
  30. Heinrich C, Neubauer F (2002) Cu-Au-Pb-Zn-Ag metallogeny of the Alpine–Balkan–Carpathian–Dinaride geodynamic province. Miner Depos 37:533–540CrossRefGoogle Scholar
  31. Hsü K, Nachev I, Vuchev V (1977) Geologic evolution of Bulgaria in light of plate tectonics. Tectonophysics 40:245–256CrossRefGoogle Scholar
  32. Iancu V, Berza T, Seghedi A, Gheuca I, Hann HP (2005) Alpine polyphase tectono-metamorphic evolution of the South Carpathians: a new overview. Tectonophysics 410:337–365CrossRefGoogle Scholar
  33. Janković S (1997) The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian Metallogenic Belt. Miner Depos 32:426–433CrossRefGoogle Scholar
  34. Janković S, Jelenković R (1997) Correlation between the Oraviţa-Krepoljin and the Bor-Srednjegorie metallogenic zones. Rom J Miner Depos 78:57–70Google Scholar
  35. Janković S, Jovanović M, Karamata S, Lovrić A (1981) Isotopic age of some rocks from the Timok eruptive area. Academy of Serbian Science and Arts, Natural Science and Mathematics 48:87–94Google Scholar
  36. Janković S, Herrington RJ, Koželj D (1998) The Bor and Majdanpek copper–gold deposits in the context of the Bor metallogenic zone (Serbia, Yugoslavia). In: Porter TM (ed) Porphyry and hydrothermal copper & gold deposits; a global perspective; conference proceedings, Australian Mineral Foundation, Glenside, Australia, 169–178Google Scholar
  37. Janković S, Jelenković R, Koželj D (eds) (2002) The Bor copper and gold deposit, QWERTY, Bor, 298Google Scholar
  38. Kamenov B, Kedialkov K, Popov K, Kehayov R (2003) Petrology of the Late Cretaceous ore–magmatic centers in central Srednogorie, Bulgaria. In: Bogdanov K, Strashimirov S (eds) Cretaceous porphyry-epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:7–27Google Scholar
  39. Karamata S, Kneević V, Pécskay Z, Djordjević M (1997) Magmatism and metallogeny of the Ridanj–Krepoljin Belt (Eastern Serbia) and their correlation with northern and Eastern Analogues. Miner Depos 32:452–458CrossRefGoogle Scholar
  40. Karamata S, Kneević-Djordjević V, Milovanović D (2002) A review of the evolution of Upper Cretaceous–Paleogene magmatism in the Timok Magmatic Complex and the associated mineralization. In: Koželj D, Jelenković R (eds) Geology and metallogeny of the copper and gold deposits in the Bor Metallogenic Zone, QWERTY, Bor, pp 15–28Google Scholar
  41. Kazmin V, Sbortshikov I, Ricou LE, Zonenshain L, Boulin J, Knipper A (1986) Volcanic belts as markers of the Mesozoic–Cenozoic active margin of Eurasia. Tectonophysics 123:123–152CrossRefGoogle Scholar
  42. Kincaid C, Griffiths RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425:58–62CrossRefGoogle Scholar
  43. Knipper A, Ricou LE, Dercourt J (1986) Ophiolites as indicators of the geodynamic evolution of the Tethyan Ocean. Tectonophysics 123:213–241CrossRefGoogle Scholar
  44. Kouzmanov K, Bailly L, Ramboz C, Rouer O, Beny J (2002) Mineralogy, fluid inclusion study, and Re–Os dating of Mo-bearing mineralization from the Vlaikoiv Vrah porphyry copper deposit, Panagyurishte district, Bulagria: preliminary results. J Conf Abstr 6:557Google Scholar
  45. Koželj D (2002) Epithermal gold mineralization in the Bor metallogenic zone. Godine, Bor, 219Google Scholar
  46. Koželj D, Jelenković R (eds) (2002) Geology and metallogeny of copper and gold deposits in the Bor metallogenic zone—Bor 100 years. QWERTY, Bor, 208Google Scholar
  47. Lilov P, Chipchakova S (1999) K–Ar dating of Upper Cretaceous magmatic rocks and hydrothermal metasomatic rocks from Central Sredna Gora. Geokhimiya, Mineralogiya, and Petrologiya 36:77–91Google Scholar
  48. Linzer HG (1996) Kinematics of retreating subduction along the Carpathian arc, Romania. Geology 24:167–170CrossRefGoogle Scholar
  49. Lips A (2002) Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE Europe. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:69–79Google Scholar
  50. Lips A, Herrington R, Stein G, Koželj D, Popov K, Wijbrans J (2004) Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho–Balkan Belt. Econ Geol 99:601–609CrossRefGoogle Scholar
  51. Manske S, Hedenquist J, O’Connor G, Tămaş C, Bauuet B, Leary S, Minut A (2006) Roşia Montană, Romania: Europe’s largest gold deposit. SEG Newsletter 64:1–15Google Scholar
  52. Markey RJ, Stein HJ, Morgan JW (1998) Highly precise Re–Os age for molybdenite using alkali fusion and NTIMS. Talanta 45:935–946CrossRefGoogle Scholar
  53. Markey RJ, Hannah JL, Morgan JW, Stein HJ (2003) A double spike for osmium analysis of highly radiogenic samples. Chem Geol 200:395–406CrossRefGoogle Scholar
  54. Minkovska V, Peybernès B, Nikolov T (2002) Palaeogeography and geodynamic evolution of the Balkanides and Moesian ‘Microplate’ (Bulgaria) during the Earliest Cretaceous. Cretac Res 23:37–48CrossRefGoogle Scholar
  55. Neubauer F (2002) Correlating Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:81–102Google Scholar
  56. Neubauer F, Lips A, Kouzmanov K, Lexa J, Ivaşcanu P (2005) 1: Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. Ore Geol Rev 27:13–44CrossRefGoogle Scholar
  57. Neugebauer J, Breiner B, Appel E (2001) Kinematics of the Alpine–West Carpathian orogen and palaeogeographic implications. J Geol Soc (Lond) 158:97–110Google Scholar
  58. Nicolae I, Soroiu M, Bonhomme GM (1992) Ages K–Ar de quelques ophiolites des Monts Apuseni du sud (Roumanie) et leur signification géologique. Géologie Alpine 68:77–83Google Scholar
  59. Nicolescu Ş, Cornell D, Bojar AV (1999) Age and tectonic setting of Boşca and Ocna de Fier-Dognecea granodiorites (Southwest Romania) and of associated skarn mineralization. Miner Depos 34:743–753CrossRefGoogle Scholar
  60. Nielsen SB, Thomsen E, Hansen DL, Clausen O (2005) Plate-wide stress relaxation explains European Paleocene basin inversions. Nature 435:195–198CrossRefGoogle Scholar
  61. Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77:789–793CrossRefGoogle Scholar
  62. Pătraşcu S, Bleahu M, Panaiotu C (1990) Tectonic implications of paleomagnetic research into Upper Cretaceous magmatic rocks in the Apuseni Mountains, Romania. Tectonophysics 180:309–322CrossRefGoogle Scholar
  63. Pătraşcu S, Bleahu M, Panaiotu C, Panaiotu CE (1992) The paleomagnetism of Upper Cretaceous magmatic rocks in the Banat area of South Carpathians: tectonic implications. Tectonophysics 213:341–352CrossRefGoogle Scholar
  64. Pătraşcu S, Şeclăman M, Panaiotu C (1993) Tectonic implications of paleomagnetism in Upper Cretaceous deposits in the Haţeg and Ruscă Montana Basins (South Carpathians, Romania). Cretac Res 14:255–264CrossRefGoogle Scholar
  65. Pătraşcu S, Panaiotu C, Şeclăman M, Panaiotu CE (1994) Timing of rotational motion of Apuseni Mountains (Romania): paleomagnetic data from Tertiary magmatic rocks. Tectonophysics 233:163–176CrossRefGoogle Scholar
  66. Popov P (1987) Tectonics of the Banat-Srednogorie Rift. Tectonophysics 14:209–216CrossRefGoogle Scholar
  67. Popov P, Strashimirov S, Popov K (2003) Geology and metallogeny of the Srednogorie Zone and Panagyurishte ore region. In: Bogdanov K, Strashimirov S (eds) Cretaceous porphyry–epithermal systems of the Srednogorie Zone, Bulgaria. SEG Guidebook Series 36:7–27Google Scholar
  68. Rădulescu D, Săndulescu M (1973) The plate-tectonics concept and the geologic structure of the Carpathians. Tectonophysics 16:155–161CrossRefGoogle Scholar
  69. Ricou LE, Dercourt J, Geyssant J, Grandjacquet C, Lepvrier C, Biju-Duval B (1986) Geological constraints on the Alpine evolution of the Mediterranean Tethys. Tectonophysics 123:83–122CrossRefGoogle Scholar
  70. Ricou LE, Burg JP, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin Acta 11:285–309CrossRefGoogle Scholar
  71. Ricou LE, Burg JP, Godfriaux I, Ivanov Z (2000) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe—reply to Ivan Zagorchev’s comment “Rhodope facts and tethys self-delusions”. Geodin Acta 13:61–63CrossRefGoogle Scholar
  72. Rosu E, Seghedi I, Downes H, Alderton DHM, Szakacs A, Pecskay Z, Panaiotu C, Panaiotu CE, Nedelcu L (2004) Extension-related Miocene calc-alkaline magmatism in the Apuseni Mountains, Romania; Origin of magmas. Schweizerische Mineralogische und Petrographische Mitteilungen 84:153–172Google Scholar
  73. Royden LH (1993) Evolution of retreating subduction boundaries formed during continental collisions. Tectonics 12:629–639Google Scholar
  74. Schmid S, Berza T, Diaconescu V, Froitzheim N, Fügenschuh B (1998) Orogen-parallel extension in the South Carpathians. Tectonophysics 297:209–228CrossRefGoogle Scholar
  75. Selverstone J (2005) Are the alps collapsing? Annu Rev Earth Planet Sci 33:113–132CrossRefGoogle Scholar
  76. Shanov S, Spassov E, Georgiev T (1992) Evidence for the existence of a paleosubduction zone beneath the Rhodopean Massif (Central Balkans). Tectonophysics 206:307–314CrossRefGoogle Scholar
  77. Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium–osmium analysis. Anal Chem 34:2136–2141CrossRefGoogle Scholar
  78. Smoliar M, Walker R, Morgan J, Du A, Sun Y (1996) Re–Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102CrossRefGoogle Scholar
  79. Stampfli G, Marcoux J, Baud A (1991) Tethyan margins in space and time. Palaeogeogr Palaeoclimatol Palaeoecol 87:373–409CrossRefGoogle Scholar
  80. Stein HJ (2006) Low-rhenium molybdenite by metamorphism in northern Sweden: recognition, genesis, and global implications. Lithos 87:300–327CrossRefGoogle Scholar
  81. Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486CrossRefGoogle Scholar
  82. Stein HJ, Scherstén A, Hannah JH, Markey RJ (2003) Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochim Cosmochim Acta 67:3673–3686CrossRefGoogle Scholar
  83. Stein HJ, Hannah JL, Zimmerman A, Markey RJ, Sarkar SC, Pal AB (2004) A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res 134:189–226CrossRefGoogle Scholar
  84. Stoykov S, Peytcheva I, von Quadt A, Moritz R, Frank M, Fontignie D (2004) Timing and magma evolution of the Chelopech volcanic complex (Bulgaria). Swiss Bull of Mineralogy and Petrology 84:101–117Google Scholar
  85. Strashimirov S, Petrunov R, Kanazirski M (2002) Porphyry–copper mineralization in the central Srednogorie Zone, Bulgaria. Miner Depos 37:587–598CrossRefGoogle Scholar
  86. Tarkian M, Hünken U, Tokmakchieva M, Bogdanov K (2003) Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria. Miner Depos 38:261–281Google Scholar
  87. Vlad SN (1997) Calcic skarns and transversal zoning in the Banat Mountains, Romania: indicators of an Andean-type setting. Miner Depos 32:446–451CrossRefGoogle Scholar
  88. Völkening J, Walczyk T, Heumann K (1991) Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. Int J Mass Spectrom Ion Process 105:147–159CrossRefGoogle Scholar
  89. von Raumer J, Stampfli G, Bussy F (2003) Gondwana-derived microcontinents: the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22CrossRefGoogle Scholar
  90. von Quadt A, Ivanov Z, Peycheva I (2001) The Central Srednogorie (Bulgaria) part of the Cu (Au–Mo) Belt of Europe; a review of the geochronological data and the geodynamical models in the light of the new structural and isotopic studies. In: Mineral deposits at the beginning of the 21st century, Proceedings of the sixth Biennial SGA Meeting 6:555–558Google Scholar
  91. von Quadt A, Peytcheva I, Heinrich CA (2002a) Life span of a Cu–(Au–PGE) porphyry deposit using high-precise U–Pb single zircon dating: example, Elatsite, Bulgaria. Geochim Cosmochim Acta 66:811Google Scholar
  92. von Quadt A, Peytcheva I, Kamenov B, Fanger L, Heinrich CA, Frank M (2002b) The Elatsite porphyry copper deposit in the Panagyurishte Ore District, Srednogorie Zone, Bulgaria: U–Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogen. Geological Society of London, Special Publications 204:119–136Google Scholar
  93. von Quadt A, Driesner T, Heinrich C (2004) Geodynamics and ore deposit evolution of the Alpine–Carpathian–Balkan–Dinaride orogenic system. Schweizerische Mineralogische und Petrographische Mitteilungen 84:1–2Google Scholar
  94. von Quadt A, Moritz R, Peycheva I, Heinrich CA (2005) 3: Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte Region of the Apuseni–Banat–Timok–Srednogorie Belt, Bulgaria. Ore Geol Rev 27:95–126CrossRefGoogle Scholar
  95. Wang B, Chen H, Yang S, Xiao A, Cheng C, Rupp J (2005) Geometry and kinematics of Late Cretaceous inversion structures in the Jiuquan Basin, western China. Cretac Res 26:319–327CrossRefGoogle Scholar
  96. Willingshofer E, Neubauer F, Cloetingh S (1999) The significance of Gosau-type basins for the Late Cretaceous history of the Alpine-Carpathian Belt. Phys Chem Earth 24:687–695CrossRefGoogle Scholar
  97. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917CrossRefGoogle Scholar
  98. Zagorchev I (1998) Rhodope controversies. Episodes 21:159–166Google Scholar
  99. Zagorchev I (2000) Rhodope and Vardar: the metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe—comment: Rhodope facts and tethys self-delusions. Geodin Acta 13:55–59CrossRefGoogle Scholar
  100. Zimmerman A (2006) Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie Belt, Southeastern Europe, constrained by high precision Re–Os molybdenite ages. M.S. Thesis, Colorado State University, 91Google Scholar
  101. Zimmerman A, Stein H, Markey R, Fanger L, Heinrich C, von Quadt A, Peytcheva I (2003) Re–Os ages for the Elatsite Cu–Au deposit, Srednogorie zone, Bulgaria. In: Eliopoulos et al (eds) Mineral Exploration and Sustainable Development. Proceedings of the seventh Biennial SGA meeting 7:1253–1256Google Scholar
  102. Zimmerman A, Stein H, Hannah J (2005) Tethyan metallogenesis: Re–Os geochronology of the Panagyurishte district, Bulgaria. Geological Society of America Abstracts with Programs 37:97Google Scholar
  103. Zonenshain L, Le Pichon X (1986) Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 123:181–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Aaron Zimmerman
    • 1
  • Holly J. Stein
    • 1
    • 2
  • Judith L. Hannah
    • 1
    • 2
  • Dejan Koželj
    • 3
  • Kamen Bogdanov
    • 4
  • Tudor Berza
    • 5
  1. 1.AIRIE Program, Department of GeosciencesColorado State UniversityFort CollinsUSA
  2. 2.Norges geologiske undersøkelse (NGU)TrondheimNorway
  3. 3.South Danube MetalsNovi BeogradSerbia
  4. 4.Department of Mineralogy, Petrology and Economic GeologySofia UniversitySofiaBulgaria
  5. 5.Geological Institute of RomaniaBucharestRomania

Personalised recommendations