Mineralium Deposita

, Volume 42, Issue 7, pp 771–789 | Cite as

Hydrothermal alteration and magnetic properties of rocks in the Carolina de Michilla stratabound copper district, northern Chile

  • Brian TownleyEmail author
  • Pierrick Roperch
  • Verónica Oliveros
  • Andres Tassara
  • César Arriagada


In the Carolina de Michilla district, northern Chile, stratabound copper mineralization is hosted by Jurassic volcanic rocks along the trace of the Atacama fault system. In this study, we present the overall effects of hydrothermal alteration on the magnetic properties of rocks in this district. Two types of metasomatic alteration associations occur, one of regional extent and the other of local hydrothermal alteration associated with copper mineralization (e.g., Lince–Estefanía–Susana). Regional alteration is interpreted as a low-grade “propylitic association” characterized by an epidote–chlorite–smectite–titanite–albite–quartz–calcite association. The local hydrothermal alteration is characterized broadly by a quartz–albite–epidote–chlorite–calcite mineral assemblage. The most pervasive alteration mineral is albite, followed by epidote and, locally, actinolite. These minerals contrast sharply against host rock minerals such as chlorite, calcite, zeolite, prehnite, and pumpellyite, but alteration is constrained to mineralized bodies as narrow and low contrast alteration halos that go outwards from actinolite–albite to epidote–albite, to epidote–chlorite, and finally to chlorite. Hydrothermal alteration minerals, compared to regional alteration minerals, show iron-rich epidotes, a lower chlorite content of the chlorite–smectite series, and a nearly total albite replacement of plagioclase in the mineralized zones. Opaque minerals associated with regional alteration are magnetite and maghemite, and those associated to hydrothermal alteration are magnetite, hematite, and copper sulphides. We present paleomagnetic results from nine sites in the Michilla district and from drill cores from two mines. Local effects of hydrothermal alteration on the original magnetic mineralogy indicate similar characteristics and mineralogy, except for an increase of hematite that is spatially associated with the Cu–sulphide breccias with low magnetic susceptibilities. Results indicate that it is impossible to magnetically differentiate mineralized bodies from unmineralized lavas, except for pyrite-rich hydrothermal breccias. In conclusion, for stratabound copper deposits of the Michilla type, the overall effect of hydrothermal alteration on the paleomagnetic properties of rocks is of low contrast, not clearly discernable even at a small scale. From an exploration point of view, magnetic exploration surveys should not discern mineralized bodies of Cu–sulphide breccias except in detailed ground surveys due to the small size of contrasting bodies. Unoriented drill cores with primary ore mineralization record a characteristic remanent magnetization of reverse polarity. Taking into account the azimuth and dip of the drill cores, we were able to compare the magnetization of the mineralized bodies with the characteristic directions from sites drilled in situ from Late Jurassic–Early Cretaceous intrusives mostly. The characteristic direction recorded by the Pluton Viera is similar to the magnetization of the ore bodies of the Estefania mine. If copper mineralization mostly postdates the tilt of the volcanic flows, the low paleomagnetic inclinations suggest an age for the mineralization near 145 Ma, the time of the lowest paleolatitude for the South American plate during the Mesozoic.


Hydrothermal alteration Rock magnetic properties Stratabound Cu mineralization Chile 



This research was funded by project DID I009/2, University of Chile, and by IRD–France. We thank J. Camacho, P. Sepulveda, and Minera Michilla for granting access and permission for research. We also thank Richard Naslund and Bill Blackburn at the University of New York, Binghamton, for help with the microprobe analysis.


  1. Acevedo J, Herrera H, Camacho J, Alfaro H (1997) Antecedentes y modelamiento geológico del yacimiento Susana, distrito minero Carolina de Michilla, II región de Antofagasta, Chile. Actas VIII Congreso Geológico Chileno 2:826–831Google Scholar
  2. Aguirre L, Féraud G, Morata D, Vergara M, Robinson D (1999) Time interval between volcanism and burial metamorphism and rate of basin subsidence in a Cretaceous Andean extensional setting. Tectonophysics 313:433–447CrossRefGoogle Scholar
  3. Arriagada C, Roperch P, Mpodozis C, Dupont-Nivet G, Cobbold P, Chauvin A, Cortés J (2003) Paleogene clockwise tectonic rotations in the forearc of central Andes, Antofagasta region, northern Chile. J Geophys Res 108(B1):2032CrossRefGoogle Scholar
  4. Besse J, Courtillot V (2002) Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr. J Geophys Res 107(B11):2300CrossRefGoogle Scholar
  5. Boric R, Díaz F, Maksaev V (1990) Geología y yacimientos metalíferos de la región de Antofagasta. Servicio Nacional de Geología y Minería, bol. 40. Servicio Nacional de Geología y Minería, Santiago, ChileGoogle Scholar
  6. Buchelt M, Tellez C (1988) The Jurassic la Negra formation in the area of Antofagasta, northern Chile (lithology, petrography, geochemistry). In: Bahlburg H, Breitkreuz C, Giese P (eds) The southern central Andes. Springer, Heidelberg, Germany, pp 171–182Google Scholar
  7. Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell, Oxford, UKGoogle Scholar
  8. Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, CambridgeGoogle Scholar
  9. Espinoza S, Véliz H, Esquivel J, Arias J, Moraga A (1996) The Cupriferous province of the coastal range, northern Chile. In: Camus F, Sillitoe R, Oetersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Society of Economic Geologists Special Publication 5:19–32Google Scholar
  10. Fisher RA (1953) Dispersion on a sphere. Proc Royal Soc London 217A:295–305Google Scholar
  11. García F (1967) Geología del norte grande de Chile. Simposio geosinclinal andino, no. 3. Sociedad Geológica de Chile, Santiago, ChileGoogle Scholar
  12. Kirschvink JL (1980) The last-squares line and plane and the analysis of paleomagnetic data. Geophys J R Astron Soc 62:699–718Google Scholar
  13. Losert J (1973) Alteration and associated copper mineralization in the Jurassic volcanic rocks of the Buena Esperanza mining area (Antofagasta province, Northern Chile). Departamento de Geología Universidad de Chile 41:51–85Google Scholar
  14. Maksaev V (2000) Significado tectónico y metalogénico de datos de trazas de fisión en apatitas de plutones de la Cordillera de la Costa de la región de Antofagasta. Actas IX Congreso Geológico Chileno 2:129–134Google Scholar
  15. Maksaev V, Zentilli M (2002) Chilean stratabound Cu–(Ag) deposits: an overview. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, 2. PCG Publishing, Adelaide, pp 185–205Google Scholar
  16. Marinovic N, Smoje I, Maksaev V, Hervé M, Mpodozis C (1995) Hoja Aguas Blancas, Región de Antofagasta. Carta Geológica de Chile, no. 70. Servicio Nacional de Geología y Minería, SantiagoGoogle Scholar
  17. Meyer C, Hemley J (1967) Wall rock alteration. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 166–235Google Scholar
  18. Muñoz N, Venegas R, Tellez C (1988) La Formación La Negra: Nuevos antecedentes estratigráficos en la Cordillera de la Costa de Antofagasta. Actas V Congreso Geológico Chileno 1:43–55Google Scholar
  19. Naranjo J, Puig A (1984) Hojas Taltal y Chañaral, regiones de antofagasta y atacama. Carta geológica de Chile, no. 62–63, Escala 1:250.000. Servicio Nacional de Geología y Minería, SantiagoGoogle Scholar
  20. Niemeyer H, Standen R, Venegas R (1990) Proyecto de exploración geológica distrital, geología del distrito minero Carolina de Michilla. Superintendencia de geología, Michilla Mining Company 1, 2:381pGoogle Scholar
  21. Oliveros V (2002) Eventos de alteración en las rocas ígneas del distrito minero de Michilla, II región, Chile: relación con la mineralización de cobre. M.Sc. thesis, Departamento de Geología, Universidad de ChileGoogle Scholar
  22. Oliveros V (2005) Étude géochronologique des unités magmatiques Jurassiques et Crétacé inferieur du Nord du Chili (18°30′–24°S, 60°30′–70°30′W): Origine, mise en place, altération, métamorphisme et mineralizations associées. Dissertation, Université de Nice-Universidad de ChileGoogle Scholar
  23. Palacios C (1986) Subvolcanic copper deposits in the coastal range of northern Chile. Zbl Geol Palaönt Teil 1(9/10):1605–1615Google Scholar
  24. Palacios C, Definis A (1981) Geología del yacimiento estratiforme “Susana”, Distrito Michilla, Antofagasta. Proc of the 1st colloquia on volcanism and metallogenesis, Antofagasta, pp 80–91Google Scholar
  25. Reed M (1997) Hydrothermal alteration and its relationship to ore fluid composition. In: Barnes KL (ed) Geochemistry of hydrothermal ore deposits. Wiley, pp 303–366Google Scholar
  26. Rogers G (1985) A geochemical traverse across the north Chilean Andes. Dissertation, Open University, United KingdomGoogle Scholar
  27. Roperch P, Chauvin A (1997) Propiedades magnéticas de las rocas volcánicas de Chile e interpretación de las anomalías magnéticas. Actas VIII Congreso Geológico Chileno, Antofagasta, Chile 1:790–794Google Scholar
  28. Sato T (1984) Manto type copper deposits in Chile, a review. Bulletin of the geological survey of Japan 35:565–582Google Scholar
  29. Schettino A, Scotese CR (2005) Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions. Geophys J Int 163:727–759CrossRefGoogle Scholar
  30. Soto H, Dreyer H (1985) Geología de “Mina Susana”: un yacimiento novedoso en Carolina de Michilla. IV Congreso Geológico Chileno. Actas IV Congreso Geológico Chileno 2:3-354–3-381Google Scholar
  31. Taylor GK, Dashwood B, Grocott J (2005) Central Andean rotation pattern: evidence from paleomagnetic rotations of an anomalous domain in the forearc of northern Chile. Geology 33:777–780CrossRefGoogle Scholar
  32. Tristá-Aguilera D, Barra F, Ruiz J, Morata D, Talavera-Mendoza O, Kojima S, Ferraris F (2006) Re-Os isotope systematics for the Lince-Estefanía deposit: constraints on the timing and source of copper mineralization in a stratabound copper deposit, Coastal Cordillera of Northern Chile. Miner Deposita 41:99–105CrossRefGoogle Scholar
  33. Tristá-Aguilera D, Ruíz J, Barra F, Morata D, Talavera-Mendoza O, Kojima S, Ferraris F (2005) Origin and age of Cu-stratabound ore deposits: Michilla district, northern Chile. In: Proc VI International symposium on andean geodynamics, Barcelona, Spain, pp 742–745Google Scholar
  34. Venegas R, Vergara M (1985) Yacimientos de Fe–Cu–(Au) ligados a rocas intrusivas y volcánicas jurásicas de la Cordillera de la Costa a la latitud de Mejillones, II región de Antofagasta. Actas IV Congreso Geológico Chileno 3:3-730–3-751Google Scholar
  35. Venegas R, Munizaga F, Tassinari C (1991) Los yacimientos de Cu–Ag del distrito Carolina de Michilla, región de Antofagasta, Chile: nuevos antecedentes geocronológicos. Actas VI congreso Geológico Chileno 1:452–455Google Scholar
  36. Vivallo W, Henriquez F (1998) Génesis común de los yacimientos estratoligados de cobre del Jurásico medio a superior en la Cordillera de la Costa, Región de Antofagasta, Chile. Revista Geológica de Chile 25(2):199–228Google Scholar
  37. Wolf F, Fonboté L, Amstutz G (1990) The Susana copper (–silver) deposit in Northern Chile. Hydrothermal mineralization associated with a Jurassic volcanic arc. In: Fonboté L, Amstutz G, Cardozo M, Cedillo C, Frutos J (eds) Stratabound ore deposits. Society for Geology Applied to Mineral Deposits Special Publication 8:319–338Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Brian Townley
    • 1
    Email author
  • Pierrick Roperch
    • 2
  • Verónica Oliveros
    • 1
  • Andres Tassara
    • 1
  • César Arriagada
    • 1
  1. 1.Departamento de GeologíaUniversidad de ChileSantiagoChile
  2. 2.IRD, UR154 LMTG and Géosciences RennesRennesFrance

Personalised recommendations