Advertisement

Mineralium Deposita

, Volume 42, Issue 4, pp 399–422 | Cite as

Palaeozoic oolitic ironstone of the French Armorican Massif: a chemical and structural trap for orogenic base metal–As–Sb–Au mineralisation during Hercynian strike-slip deformation

  • Eric GloaguenEmail author
  • Yannick Branquet
  • Philippe Boulvais
  • Yves Moëlo
  • Jean-Jacques Chauvel
  • Pierre-Jacques Chiappero
  • Eric Marcoux
Article

Abstract

In the Saint-Aubin-des-Châteaux quarry (Armorican Hercynian belt, western France), an epigenetic hydrothermal alteration affects an oolitic ironstone layer intercalated within the Lower Ordovician Grès armoricain Formation. The hydrothermal overprint produced pervasive and massive sulphidation with stratoid pyritised lenticular bodies within the oolitic ironstone layer. These sulphide lenses are spatially associated with strike-slip faults and extend laterally from them. After the massive sulphidation stage (Fe–As, stage 1), subsequent fracturing allowed the deposition of base metals (stage 2) and Pb–Sb–Au (stage 3) parageneses in veins. The dominant brittle structures are vertical extension veins, conjugate shear veins and strike-slip faults of various orders. All these structures are filled with the same paragenetic sequence. Deformation analysis allows the identification of structures that developed incrementally via right-lateral simple shear compatible with bulk strain affecting the Central Armorican Domain. Each increment corresponds to a fracture set filled with specific parageneses. Successive hydrothermal pulses reflect clockwise rotation of the horizontal shortening direction. Geothermometry on chlorite and arsenopyrite shows an input of hot hydrothermal fluids (maximum of 390–350°C) during the main sulphide stage 1. The subsequent stages present a marked temperature drop (300–275°C). Lead isotopes suggest that the lead source is similar for all hydrothermal stages and corresponds to the underlying Neo-Proterozoic basement. Lead isotope data, relative ages of deformation and comparison with neighbouring deposits suggest that large-scale fluid pulses occurred during the whole Hercynian orogeny rather than pulses restricted to the late Hercynian period. The vicinity of the Hercynian internal domain appears as a key control for deformation and fluid flow in the oolitic ironstones, which acted as a chemical and structural trap for the hydrothermal fluids. The epigenetic mineralisation of Saint-Aubin-des-Châteaux appears to be very similar to epigenetic sulphidation described in banded iron formation-hosted gold deposits.

Keywords

Oolitic ironstone Orogenic gold Lead isotopes France 

Notes

Acknowledgement

The authors thank Dr. J.-P. Pierres, B. Geibig (geologists of Hervé S.A. Compagny) and all the personnel of the Saint-Aubin-des-Châteaux quarry for support during field work and sampling. The technical assistance of N. Morin and J.-J. Peucat (Rennes1 University) for lead isotope analysis and O. Rouer (ISTO) for EPMA is greatly appreciated. Geochemical data from Table 1 and Fig. 7 have been obtained within the framework of the PATRIFER program. We are grateful to V. Bouchot (BRGM) who has greatly contributed to improve this manuscript with advice and bibliographic inputs. Thanks also to Dr. J.-P. Lorand and Pr. M. Guiraud (MNHN Paris) for fruitful discussions. The manuscript was greatly improved by critical reviews and language revision by J. Miller (University of Melbourne, Australia), an anonymous French reviewer, and B. Lehmann.

This paper is dedicated in memory to Pr. Jean-Jacques Chauvel who suddenly died during the preparation of this paper.

References

  1. Almeida A, Noronha F (1988) Fluid associated with W and Au–Ag deposits of the Mirandela area, NE Portugal: an example of peri-granitic zoning. Bull Minéral 111:331–341Google Scholar
  2. Angelier J, Mechler P (1977) Sur la méthode graphique de recherche des contraintes principales également utilisable en tectonique et en séismologie: la méthode des dièdres droits. Bull Soc Géol Fr 7, t. XIX, 6:1309–1318Google Scholar
  3. Bailey SW (1980) Summary of recommendations of AIPEA nomenclature committee. Clays Clay Miner 28:73–78CrossRefGoogle Scholar
  4. Bellanger E (1911) Note sur l’importance probable du gisement ferrifère de l’Anjou. An Mines 20:452–456Google Scholar
  5. Berthé D, Choukroune P, Jégouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42CrossRefGoogle Scholar
  6. Bouchot V, Milési JP, Ledru P (2000) Crustal-scale hydrothermal palaeofield and related Variscan Au, Sb, W orogenic deposits at 310–305 Ma (French Massif Central, Variscan belt). SGA News 10:6–12Google Scholar
  7. Bouchot V, Ledru P, Lerouge C, Lescuyer J-L, Milesi J-P (2005) 5: Late Variscan mineralizing systems related to orogenic processes: the French Massif Central. Ore Geol Rev 27:169–197CrossRefGoogle Scholar
  8. Branquet Y (1999) Etude structurale et métallogénique des gisements d’émeraude de Colombie: contribution à l’histoire tectono-sédimentaire de la Cordillère Orientale de Colombie Institut National Polytechnique de Lorraine, Nancy. Thesis, 295 pGoogle Scholar
  9. Branquet Y, Laumonier B, Cheilletz A, Giuliani G (1999) Emeralds in the eastern Cordillera of Colombia: two tectonic settings for one mineralization. Geology 27:597–600CrossRefGoogle Scholar
  10. Bril H (1982) Les minéralisations plombo-zincifères du second cycle dans le district de Brioude-Massiac (Massif central français): données géochimiques et isotopiques. Bull BRGM (2), section II:225–235Google Scholar
  11. Bril H (1985) Conditions de stabilité des sulfures dans les filons de haute température du district de Brioude-Massiac (Massif central français). Bull Minéral 108:161–171Google Scholar
  12. Bril H, Fouquet Y, Moëlo Y, Picot P (1981) Utilisation du mispickel comme indicateur géochimique en métallogénie régionale In: B.R.G.M. (ed) Résumés des principaux résultats scientifiques et techniques du S.G.N. pour 1980. Orléans, pp 84–86Google Scholar
  13. Carron J-P, Le Guen de Kerneizon M, Nachit H (1994) Variscan granites from Brittany. In: Keppie JD (ed) Pre-Mesozoic geology in France and related areas. Springer, Berlin Heidelberg New York, pp 231–239Google Scholar
  14. Cartier C (2002) Structure de l’unité de Saint-Georges-Sur-Loire et du domaine ligérien (Massif Armoricain). Implications géodynamiques pour la Chaîne hercynienne. Thesis, Université d’Orléans, 309 pGoogle Scholar
  15. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  16. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  17. Chantraine J, Autran A, Cavelier C (1996) Carte géologique de la France. BRGM, OrléansGoogle Scholar
  18. Chauris L, Marcoux E (1994) Metallogeny of Armorican Massif. In: Keppie JD (ed) Pre-Mesozoic geology in France and related area. Springer, Berlin Heidelberg New York, pp 243–264Google Scholar
  19. Chauris L, Houlgatte E, Laforet C, Picot P (1985) Un district antimono-aurifère à gangue quartzo-carbonatée, Le Semnon (Ille-et-Vilaine, Massif Armoricain, France). Hercynica I:111–119Google Scholar
  20. Chauvel J-J (1971) Contribution à l’étude des minerais de fer de l’Ordovicien inférieur de Bretagne. Mém Soc Géol Minér Bretagne 16:244Google Scholar
  21. Chauvel JJ (1974) Les minerais de fer de l’Ordovicien inférieur du bassin de Bretagne-Anjou, France. Sedimentology 21:127–147CrossRefGoogle Scholar
  22. Chauvel J-J, Le Corre C (1971) La transgression paléozoïque et l’Ordovicien inférieur dans la presqu’île de Crozon (Finistère) Mém. BRGM, Orléans, pp 109–117Google Scholar
  23. Chauvel JJ, Phan KD (1965) Présence d’apatite strontianifère dans le minerai de fer de l’Ordovicien inférieur de Bretagne. C R Acad Sci Paris 260:2855–2857Google Scholar
  24. Choukroune P, Lopez-Munoz M, Ouali J (1983) Cisaillement ductile sud-armoricain et déformations discontinues associées: mise en évidence de la déformation régionale non coaxiale dextre. C R Acad Sci Paris 296:657–660Google Scholar
  25. Christie T, Brathwaite B (1997) Mineral commodity report 15—Iron. NZ Min 22:22–37Google Scholar
  26. Cotter E, Link JE (1993) Deposition and diagenesis of Clinton ironstones (Silurian) in the Appalachian Foreland Basin of Pennsylvania. Geol Soc Amer Bull 105:911–922CrossRefGoogle Scholar
  27. Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing Earth. Earth Planet Sci Lett 28:155–171CrossRefGoogle Scholar
  28. Dabard M-P (1983) Etude pétrographique et géochimique des roches sédimentaires paléozoïques du Massif Armoricain-Presqu’île de Crozon, Flanc Nord du bassin de laval. Thesis, Université de Rennes I, 207 pGoogle Scholar
  29. Dadet P, Herrouin Y, Laville P, Paris F (1987) Carte géologique de la France—Bain-de-Bretagne (388). BRGM, OrléansGoogle Scholar
  30. Davy L (1880) Notice géologique sur l’arrondissement de Segré. Bull Soc Ind Minér 9:1–101Google Scholar
  31. Donnot M, Guigues J, Lulzac Y, Magnien A, Parfenoff A, Picot P (1973) Un nouveau type de gisement d’europium: la monazite grise à europium en nodules dans les schistes paléozoïques de Bretagne. Miner Depos 8:7–18CrossRefGoogle Scholar
  32. Dubreuil M, Blaise J, Cavet P, Diot H, Gruet M (1988) Carte géologique de la France—Saint-Mars-la-Jaille (421). BRGM, OrléansGoogle Scholar
  33. Durand J, Noblet C (1986) Paléocourants dans la Formation du Grès armoricain: persistance des mécanismes de transport en domaine cratonique. Rev Géol Dyn Géogr Phys 27:13–26Google Scholar
  34. Fernández A, Moro MC (1998) Origin and depositional environment of Ordovician stratiform iron mineralization from Zamora (NW Iberian peninsula). Miner Depos 33:606–619CrossRefGoogle Scholar
  35. Fernández A, Chauvel J-J, Moro MC (1998) Comparative study of the Lower Ordovician ironstones of the Iberian massif (Zamora, Spain) and of the Armorican Massif (Central Brittany, France). J Sediment Res 68:53–62Google Scholar
  36. Foster RP, Gilligan JM (1987) Archaean iron-formation and gold mineralization in Zimbabwe. In: Uitterdijk Appel PW, Laberge GL (eds) Precambrian iron formations. Theophrastus Publication, S. A., Athens, Greece, pp 635–674Google Scholar
  37. Franceschelli M, Puxeddu M, Carta M (2000) Mineralogy and geochemistry of late Ordovician phosphate-bearing oolitic ironstones from NW Sardinia, Italy. Mineral Petrol 69:267–293CrossRefGoogle Scholar
  38. Fripp REP (1976) Stratabound gold deposits in Archean banded iron-formation, Rhodesia. Econ Geol 71:58–75Google Scholar
  39. Gapais D, Le Corre C (1980) Is the Hercynian belt of Brittany a major shear zone? Nature 288:574–576CrossRefGoogle Scholar
  40. Gloaguen E (2002) Etude structurale et métallogénique du minerai de fer hydrothermalisé de la carrière de Saint-Aubin-Des-Châteaux, Loire-Atlantique (France). Master research report, Université d’Orléans, 41 pGoogle Scholar
  41. Gross GA (1996a) Gîtes stratiformes de fer In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Géologie des types de gîtes minéraux du Canada. Comm Géol Can 8:47–90Google Scholar
  42. Gross GA (1996b) Roches ferrugineuses In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Géologie des types de gîtes minéraux du Canada. Comm Géol Can, pp 82–90Google Scholar
  43. Groves DI, Vearcombes JR (1990) The scale of ore-depositional system: an important restraint on epigenic vs remobilised syngenetic origins for Archean mesothermal gold deposits. Geol Rundsch 79:345–353CrossRefGoogle Scholar
  44. Guillocheau F, Rolet M (1982) La sédimentation Paléozoïque Ouest-Armoricaine. Bull Soc Géol Minéral Bretagne 14(2):45–62Google Scholar
  45. Gumiaux C (2003) Modélisation du cisaillement de Bretagne Centrale: déformation crustale et implications lithosphériques. Mém Geosci Rennes 106:266Google Scholar
  46. Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004) Tectonic history of the Hercynian Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307Google Scholar
  47. Herrouin Y, Rabu D, Fourniguet J (1988) Carte géologique de la France—Châteaubriant (389). BRGM, OrléansGoogle Scholar
  48. Herrouin Y, Dadet P, Guigues J, Laville P, Talbo H (1989) Notice explicative, carte géologique de la France (1/50 000), Bain-de-Bretagne (388). BRGM, Orléans, pp 82Google Scholar
  49. Hillier S, Velde B (1991) Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Miner 26:149–168CrossRefGoogle Scholar
  50. Jégouzo P (1980) The South Armoricain Shear Zone. J Struct Geol 2(1–2):39–47CrossRefGoogle Scholar
  51. Joseph P (1982) Le minerai de fer oolithique ordovicien du Massif Armoricain: Sédimentologie et Paléogéographie Ecole Nationale Supérieure des Mines de Paris. Thesis, 324 pGoogle Scholar
  52. Jowett EC (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In: GAC/MAC/SEG Joint Annual Meeting, Toronto, May 27–29, 1991, 16, A62, Program with AbstractsGoogle Scholar
  53. Kerforne F (1914) Sur la position systématique des couches de minerai de fer de l’Ordovicien inférieur de la région de Châteaubriant. C R hebd Séanc Acad Sci Paris 159:758–760Google Scholar
  54. Kerforne F (1915) Etude géologique de la région silurienne de Châteaubriant (Loire-Inférieure). Bull Soc Géol Fr 3(15):191Google Scholar
  55. Kerforne F (1923) Les gisements minéralisés de La Chapelle-Saint-Melaine (I. et V.). Bull Soc Géol Minéral Bretagne 3:23Google Scholar
  56. Kerrich R, Fryer BJ (1979) Archaean precious metal hydrothermal systems, Dome mine, Abitibi Greenstone belt. II. REE and oxygen isotope relations. Can J Earth Sci 16:440–458CrossRefGoogle Scholar
  57. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911Google Scholar
  58. Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe–As–S and their application. Can Miner 14:364–386Google Scholar
  59. Le Corre C (1969) Sur une paragenèse à chloritoïde dans les schistes de l’Ordovicien moyen des synclinaux du Sud de Rennes (Massif Armoricain). Bull Soc Géol Minéral Bretagne (C):33–44Google Scholar
  60. Le Corre C (1975) Analyse comparée de la cristallinité des micas dans le Briovérien et le Paléozoïque Centre-Armoricains: zonéographie et structure d’un domaine épizonal. Bull Soc Géol Fr XVII:8Google Scholar
  61. Le Corre C (1978) Approche quantitative des processus synschisteux. L’exemple du segment Hercynien de Bretagne Centrale. Thesis, Université de Rennes I, 382 pGoogle Scholar
  62. Le Corre C, Auvray B, Ballèvre M, Robardet M (1991) Le Massif Armoricain. Sci Geol Bull 44(1–2):31–103Google Scholar
  63. Ledru P, Bouchot V (1993) Revue des minéralisations aurifères de Craton Précambrien de São Francisco (Brésil) et discussion sur leurs contrôles structuraux. Chron Rech Min 511:5–20Google Scholar
  64. Lopez-Munoz M (1981) Analyse structurale de la partie centrale du synclinorium de Saint-Julien-de-Vouvantes et de l’axe Lanvaux-Les-Ponts-de-Cé (Massif Armoricain). Bull Soc Géol Minéral Bretagne XIII:117–123Google Scholar
  65. Lyons JC (ed) (1957) Wabana iron ore deposits. The Canadian Institute of Mining and Metallurgy, Montreal, QuebecGoogle Scholar
  66. Macdonald AJ (ed) (1990) Banded oxide facies iron formation as a host for gold mineralization. Theophrastus Publications, S. A., Athens, GreeceGoogle Scholar
  67. Marcoux E (1987) Isotopes du plomb et paragenèses métalliques, traceurs de l’histoire des gîtes minéraux. Doc BRGM 117, OrléansGoogle Scholar
  68. Maurel Palacin D (1985) Etude des filons polymétalliques (W, Au, Ag.) au Sud de Mirandela (Trás-os-Montes, Portugal). Relations avec les granites Université Pierre & Marie Curie (Paris VI). Mém Sci Terre 85-01, 214 pGoogle Scholar
  69. McCuaig CT, Kerrich R (1998) PTt–deformation–fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 12:381–453Google Scholar
  70. McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310CrossRefGoogle Scholar
  71. Méloux J, Rouveyrol P, Guigues J, Dumas J, Durand G, Gorichon A, Le Fur Y, Lemarchand R, Mulot B (1979) Carte des gîtes minéraux de la France—Nantes. BRGM, OrléansGoogle Scholar
  72. Moëlo Y, Ohnenstetter D, Marcoux E, Maurel D (1985) Etude méthodologique relative à la non-stoechiométrie du mispickel, FeAs1−xS1+x. Résumés des principaux résultats scientifiques et techniques du BRGM pour 1984:303Google Scholar
  73. Moëlo Y, Lasnier B, Palvadeau P, Léone P, Fontan F (2000) La Lulzacite, Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10, un nouveau phosphate de strontium (Saint-Aubin-Des-Chateâux, Loire-Atlantique, France). C R Acad Sci Paris 330:314–324Google Scholar
  74. Moëlo Y, Lulzac Y, Rouer O, Palvadeau P, Gloaguen E, Léone P (2002) Scandium mineralogy: pretulite with scandian zircon and xenotime-(Y) within an apatite-rich oolitic ironstone from Saint-Aubin-Des-Châteaux, Armorican Massif, France. Can Miner 40:1657–1673Google Scholar
  75. Newton PGN, Ridley JR, Groves DI, Khosrowshahi S, Smith B (1997) Integration of directional variography and structural geology: an example from the Santa Craze BIF-hosted Au deposit, near Kalgoorlie, Western Australia. Chron Rech Min 529:105–125Google Scholar
  76. Noblet C (1983) Interprétations des cartes d’isopaques de la Formation du Grès armoricain levées en Bretagne et en Normandie. Géol Fr 2:311–320Google Scholar
  77. Oh M-S, Marcoux E, Calvez J-Y, Touray J-C (1989) Anomalous unradiogenic lead from strata-bound Zn–Pb–Cu mineralization in the Saint-Georges-sur-Loire synclinorium (Armorican Massif, France). Econ Geol 84:1436–1443Google Scholar
  78. Phillips GN, Groves DI, Martyn JE (1984) An epigenetic origin for Archean banded iron-formation-hosted gold deposits. Econ Geol 79:162–171Google Scholar
  79. Puzenat L (1939) La sidérurgie armoricaine. Mém Soc Géol Minér Bretagne IV:399Google Scholar
  80. Roman-Berdiel T, Gapais D, Brun JP (1997) Granite intrusion along strike-slip zones in experiment an nature. Am J Sci 297:651–678CrossRefGoogle Scholar
  81. Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. Can Miner 23:517–534Google Scholar
  82. Sibson RH (1990) Faulting and fluid flow In: Nesbitt BE (ed) Short course on fluids in tectonically active regime of the continental crust. Mineral Assoc Canada, Vancouver, May 1990, pp 93–132Google Scholar
  83. Spears DA (1989) Aspects of iron incorporation into sediments with special reference to the Yorkshire Ironstone. In: Young TP, Taylor WEG (eds) Phanerozoic ironstones. Geological Society Special Paper, London, pp 19–30Google Scholar
  84. Spears DA, Caswell SA (1986) Mineral matter in coals: cleat minerals and their origin in some coals from the English midlands. Int J Coal Geol 6:107–125CrossRefGoogle Scholar
  85. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  86. Sundblad K, Zachrisson E, Smeds SA, Berglund S, Aalinder C (1984) Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides. Econ Geol 79:1660–1668Google Scholar
  87. Thompson MJ, Watchorn RB, Bonwick CM, Frewin MO, Goodgame VR, Pyle MJ, MacGeehan PJ (eds) (1990) Gold deposits of Hill 50 Gold Mine NL at Mount Magnet. The Australasian Institute of Mining and Metallurgy, MelbourneGoogle Scholar
  88. Trautmann F, Donnot M, Lemaire D, Cagnet-Mawhin MP (1987) Carte géologique de la France—Nozay (420). BRGM, OrléansGoogle Scholar
  89. Van Houten FB, Arthur MA (1989) Temporal patterns among Phanerozoic oolitic ironstones and oceanic anoxia. In: Young TP, Taylor WEG (eds) Phanerozoic ironstones. Geological Society Special Publication, pp 33–39Google Scholar
  90. Van Houten FB, Hong-Fei H (1990) Stratigraphic and palaeogeographic distribution of Palaeozoic oolitic ironstones. In: McKerrow WS, Scotese CR (eds) Palaeozoic palaeogeography and biogeography. Geol Soc Mem 12:87–93Google Scholar
  91. Vigneresse J-L (1983) Enracinement des granites armoricains estimés d’après la gravimétrie. Bull Soc Géol Minéral Bretagne 15:1–15Google Scholar
  92. Vigneresse JL, Brun JP (1983) Les leucogranites armoricains. Structures et mise en place des granites hercyniens. Bull Soc Géol Fr 25(3):357–366Google Scholar
  93. Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703CrossRefGoogle Scholar
  94. Xie X, Byerly GR, Ferrel REJ (1997) IIb Trioctahedral chlorite from the Barberton Greenstone belt: crystal structure and rock composition constraints with implications to geothermometry. Contrib Mineral Petrol 126:275–291CrossRefGoogle Scholar
  95. Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajas, Brazil. Miner Depos 30:30–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Eric Gloaguen
    • 1
    Email author
  • Yannick Branquet
    • 1
  • Philippe Boulvais
    • 2
  • Yves Moëlo
    • 3
  • Jean-Jacques Chauvel
    • 2
  • Pierre-Jacques Chiappero
    • 4
  • Eric Marcoux
    • 1
  1. 1.Institut des Sciences de la Terre d’Orléans (ISTO)UMR 6113 CNRS/Université d’OrléansOrleans Cedex 2France
  2. 2.Géosciences RennesUMR 6118, CNRS/Université de Rennes 1Rennes CedexFrance
  3. 3.Laboratoire de Chimie du Solide, Institut des Matériaux Jean RouxelCNRS UMR 6502Nantes Cedex 3France
  4. 4.Département Histoire de la TerreUSM 201-UMR 7160, Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations