Mineralium Deposita

, Volume 42, Issue 4, pp 337–359 | Cite as

Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany

  • Rolf L. RomerEmail author
  • Rainer Thomas
  • Holly J. Stein
  • Dieter Rhede


Granites and primary tin mineralization in the Erzgebirge were dated using (1) conventional U–Pb dating of uraninite inclusions in mica, (2) Rb–Sr dating of inclusions in quartz that represent highly evolved melts, (3) Re–Os dating of magmatic–hydrothermal molybdenite, and (4) chemical Th–U–Pb dating of uraninite. Conventional isotope dilution and thermal ion mass spectrometry and chemical Th–U–Pb dating of uraninite in granites from the Ehrenfriedersdorf mining district provide ages of 323.9 ± 3.5 Ma (2σ; Greifenstein granite) and 320.6 ± 1.9 and 319.7 ± 3.4 Ma (2σ, both Sauberg mine), in agreement with U–Pb apatite ages of 323.9 ± 2.9 and 317.3 ± 1.6 Ms (2σ, both Sauberg mine). Rb–Sr analysis of melt inclusions from Zinnwald gives highly radiogenic Sr isotopic compositions that, with an assumed initial Sr isotopic composition, permit calculation of precise ages from single inclusions. The scatter of the data indicates that some quartz-hosted melt inclusions have been affected by partial loss of fluid exsolved from the melt inclusion. Re–Os dating of two molybdenite samples from Altenberg provides ages of 323.9 ± 2.5 and 317.9 ± 2.4 Ma (2σ). Together with age data from the literature, our new ages demonstrate that primary tin mineralization and the emplacement of the large Sn-specialized granites in the Erzgebirge fall in a narrow range between 318 and 323 Ma. Primary Sn mineralization occurred within a short interval during post-collisional collapse of the Variscan orogen and was essentially synchronous over the entire Erzgebirge. In contrast to earlier claims, no systematic age difference between granites of the eastern and western Erzgebirge was established. Furthermore, our data do not support a large age range for Late-Variscan granites of the Erzgebirge (330–290 Ma), as has been previously suggested.


U–Pb Rb–Sr Re–Os Uraninite Mineral inclusion Melt inclusion Molybdenite Erzgebirge 



We thank Gerhard Berger (GFZ Potsdam) for doubly polished thick sections and Katrin Feller (Univ Potsdam) and Matthias Kreplin (GFZ Potsdam) for micro-drilling the uraninite and melt inclusion samples. RLR thanks Cathrin Schulz and Anette Meixner (both GFZ Potsdam) for support in the laboratory. Thomas Seifert (BA TU Freiberg) and Wolfgang Schilka (Altenberg)are thanked for providing AIRIE with molybdenite samples from the Altenberg deposit, and Ulf Linnemann (Staatl. Naturhist. Museum Dresden) is acknowledged for apatite samples E1 and E2. The Re–Os analyses were performed by Richard Markey (AIRIE). The Re–Os work was supported by the US National Science Foundation (EAR-0087483) and Edward M. Warner. We thank Hans-Jürgen Förster (Potsdam) and Fernando Corfu (Oslo) for helpful and detailed reviews.


  1. Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke im Thieme-Verlag, Stuttgart, p 300Google Scholar
  2. Bielicki KH, Tischendorf G (1991) Lead isotope and Pb–Pb model age determination of ores from Central Europe and their metallogenetic interpretation. Contrib Mineral Petrol 106:440–461CrossRefGoogle Scholar
  3. Breiter K, Seltmann R (eds) (1995) Ore mineralizations of the Kru¢cné Hory Mts (Erzgebirge). SGA excursion guide, third biennial SGA meeting, Prague, 28–31 August 1995, Czech Geological Survey, Prague, p 205Google Scholar
  4. Brooks C, Hart SR, Wendt I (1972) Realistic use of two-error regression treatments as applied to rubidium–strontium data. Rev Geophys Space Phys 10:551–577Google Scholar
  5. Carl C, Wendt I (1993) Radiometrische Datierung der Fichtelgebirgsgranite. Z Geol Wiss 21:370–380Google Scholar
  6. Chen F, Siebel W, Satir M (2003) Geochemical and isotopic composition and inherited zircon ages as evidence for lower crustal origin of two Variscan S-type granites in the NW Bohemian massif. Int J Earth Sci 92:173–184Google Scholar
  7. Christensen JN, Halliday AN (1996) Rb–Sr ages and Nd isotopic compositions of melt inclusions from the Bishop Tuff and the generation of silicic magma. Earth Planet Sci Lett 144:547–561CrossRefGoogle Scholar
  8. Corfu F (2000) Extraction of Pb with artificially too-old ages during stepwise dissolution experiments on Archean zircon. Lithos 53:279–291CrossRefGoogle Scholar
  9. Davis DW, Krogh TE (2000) Preferential dissolution of 234U and radiogenic Pb from alpha-recoil-damaged lattice sites in zircon; implications for thermal histories and Pb isotopic fractionation in the near surface environment. Chem Geol 172:41–58CrossRefGoogle Scholar
  10. Finch R, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Rev Miner 38:91–179Google Scholar
  11. Förster B (1996) U/Pb Datierung an Pechblenden der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Ph.D. Thesis, University of Giessen, Germany (212 p. plus appendices)Google Scholar
  12. Förster H-J (1998) Die variszischen Granite des Erzgebirges und ihre akzessorischen Minerale. Habilitation Thesis, Tech Univ Bergakademie Freiberg, GermanyGoogle Scholar
  13. Förster H-J (1999) The chemical composition of uraninite in Variscan granites of the Erzgebirge, Germany. Min Mag 63:239–252CrossRefGoogle Scholar
  14. Förster H-J (2000) Cerite–(Ce) and thorian synchysite–(Ce) from the Niederbobritzsch granite, Erzgebirge, Germany: implications for the differential mobility of the LREE and Th during alteration. Can Mineral 38:67–79Google Scholar
  15. Förster H-J (2001) Synchysite–(Y)–synchysite–(Ce) solid solutions from Markersbach, Erzgebirge, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Mineral Petrol 72:259–280CrossRefGoogle Scholar
  16. Förster H-J, Rhede D (2006) The Be–Ta-rich granite of Seiffen (eastern Erzgebirge, Germany): accessory-mineral chemistry, composition, and age of a Late-Variscan Li–F granite of A-type affinity. Neues Jahrb Mineral Abh 182:307–321CrossRefGoogle Scholar
  17. Förster H-J, Tischendorf G, Seltmann R, Gottesmann B (1998) Die varizischen Granite des Erzgebirges: neue Aspekte aus stofflicher Sicht. Z Geol Wiss 26:31–60Google Scholar
  18. Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645CrossRefGoogle Scholar
  19. Geisler T, Schleicher H (2000) Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U–Th–Pb discordance in zircon. Chem Geol 163:269–285CrossRefGoogle Scholar
  20. Gerstenberger H (1989) Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb/Sr isochron intercepts. Earth Planet Sci Lett 93:65–75CrossRefGoogle Scholar
  21. Gerstenberger H, Kaemmel T, Haase G, Geisler M (1982) Zur Charakterisierung der Granite im Westerzgebirge: Rb/Sr-radiogeochronologische Untersuchungen und Spurenelementkonzentrationen. Freib Forsch Hefte 389:220–246Google Scholar
  22. Gerstenberger H, Haase G, Habedank M (1983) Rb/Sr-Datierungen der jüngeren Granite in Ehrenfriedersdorf. ZfI-Mitt 76:125–133Google Scholar
  23. Gerstenberger H, Haase G, Wemmer K (1995) Isotope systematics of the Variscan postkinematic granites in the Erzgebirge (E Germany). Terra Nostra 95/7:36–41Google Scholar
  24. Haake R (1972) Zur Alterstellung granitischer Gesteine im Erzgebirge. Geologie 21:641–676Google Scholar
  25. Holliger P, Pagel M, Pironon J (1989) A model for 238U radioactive daughter loss from sediment-hosted pitchblende deposits and the Late Permian–Early Triassic depositional U–Pb age of the Muellenbach uranium ore (Baden-Wuerttemberg, F.R.G.). Chem Geol 80:45–53Google Scholar
  26. Hösel G (1994) Das Zinnerz-Lagerstättengebiet Ehrenfriedersdorf/Erzgebirge. Bergbau in Sachsen 1:1–196Google Scholar
  27. Janeczek J, Ewing RC (1995) Mechanisms of lead release from uraninite in natural fission reactors in Gabon. Geochim Cosmochim Acta 59:1917–1931CrossRefGoogle Scholar
  28. Kempe U (2003) Precise electron microprobe age determination in altered uraninite: consequences on the intrusion age and the metallogenetic significance of the Kirchberg granite (Erzgebirge, Germany). Contrib Mineral Petrol 145:107–118Google Scholar
  29. Kempe U, Wolf D, Ebermann U, Bombach K (1999) 330 Ma Pb/Pb single zircon evaporation ages for the Altenberg granite porphyry, Eastern Erzgebirge (Germany): implications for Hercynian granite magmatism and tin mineralization. Z Geol Wiss 27:385–400Google Scholar
  30. Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Sergeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Miner Depos 39:646–669CrossRefGoogle Scholar
  31. Kigoshi K (1971) Alpha-recoil thorium-234: dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science 173:47–48CrossRefGoogle Scholar
  32. Kosler J, Simonetti A, Sylvester P, Cox R, Turbett MN, Wilton D (2003) Laser ablation ICP-MS measurements of Re/Os in molybdenites and implications for Re–Os geochronology. Can Mineral 41:307–320Google Scholar
  33. Kühn A, Glodny J, Iden K, Austrheim H (2000) Retention of Precambian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc Complex, W-Norway. Lithos 51:305–330CrossRefGoogle Scholar
  34. Kullerud L (1991) On the calculation of isochrons. Chem Geol 87:115–124Google Scholar
  35. Kurz S (2000) Hydrothermale Alterationsprozesse in Zirkonen-Isotopengeologische und geochemische Implikationen. Ph.D. Thesis, University of Göttingen, p 112Google Scholar
  36. Leroy JL, Turpin L (1988) REE, Th and U behaviour during hydrothermal and supergene processes in a granitic environment. Chem Geol 68:239–251CrossRefGoogle Scholar
  37. Ludwig KR (1978) Uranium-daughter migration and U/Pb isotope apparent ages of uranium ores, Shirley, Basin, Wyoming. Econ Geol 73:29–49CrossRefGoogle Scholar
  38. Markey RJ, Hannah JL, Morgan JW, Stein, HJ (2003) A double spike for osmium analysis of highly radiogenic samples. Chem Geol 200:395–406CrossRefGoogle Scholar
  39. Mattinson JM (1994) A study of complex discordance in zircons using step-wise dissolution techniques. Contrib Mineral Petrol 116:117–129CrossRefGoogle Scholar
  40. Matzke H (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Effects 64:3–33Google Scholar
  41. Mikulski SZ Markey RJ, Stein HJ (2005) Re–Os ages for auriferous sulfides from the gold deposits in the Kaczawa Mountains (SW Poland). In: Mao Jingwen, Bierlein FP (eds) Mineral deposits research: meeting the global Challenge. Proc 8th Bien SGA Meeting, pp 793–796Google Scholar
  42. Müller A, Breiter K, Seltmann R, Pécskay Z (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80:201–227CrossRefGoogle Scholar
  43. Nasdala L, Götze J, Pidgeon RT, Kempe U, Seifert T (1998) Constraining a SHRIMP U–Pb age: microscale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132:300–306CrossRefGoogle Scholar
  44. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictisation of natural zircon: Accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144Google Scholar
  45. Oelsner O (1952) Die pegmatitisch-pneumatolytischen Lagerstätten des Erzgebirges mit Ausnahme der Kontaktlagerstätten. Freib Forsch Hefte 9:80Google Scholar
  46. Pettke T, Diamond LW (1995) Rb–Sr isotopic ananlysis of fluid inclusions in quartz: Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochim Cosmochim Acta 59:4009–4027CrossRefGoogle Scholar
  47. Poitrasson F, Pin C, Duthou JL (1995) Hydrothermal remobilization of rare earth elements and its effects on Nd isotopes in rhyolite and granite. Earth Planet Sci Lett 145:79–96CrossRefGoogle Scholar
  48. Rhede D, Wendt I, Förster H-J (1996) A three-dimensional method for calculating independent chemical U/Pb- and Th/Pb-ages of accessory minerals. Chem Geol 130:247–253CrossRefGoogle Scholar
  49. Romer RL (1994) Rb–Sr data structure—a possible cause for differences in Rb–Sr WR and U–Pb zircon ages. GFF 116:93–103Google Scholar
  50. Romer RL (2001) Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: the U–Pb systematics of Brachiosaurus brancai. Geochim Cosmochim Acta 65:4201–4213CrossRefGoogle Scholar
  51. Romer RL (2003) Alpha-recoilin U–Pb geochronology: effective sample size matters. Contrib Mineral Petrol 145:481–491CrossRefGoogle Scholar
  52. Romer RL, Rocholl A (2004) Activity disequilibrium of 230Th, 234U, and 238U in old stilbite: effects of young U mobility and α-recoil. Geochim Cosmochim Acta 68:4705–4719CrossRefGoogle Scholar
  53. Romer RL, Thomas R (2005) U–Pb dating of micro-inclusions: The age of the Ehrenfriedersdorf tin deposit (Erzgebirge, Germany). In: Mao Jingwen, Bierlein FP (eds) Mineral deposits research: meeting the global challenge. Proc 8th Bien SGA Meeting, pp 817–820Google Scholar
  54. Romer RL, Heinrich W, Schröder-Smeibidl B, Meixner A, Fischer C-O, Schulz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE-Mexico: evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petrol 149:400–429CrossRefGoogle Scholar
  55. Selby D, Creaser RA (2004) Macroscale NTIMS and microscale LA-MC-ICP-MS Re–Os isotopic analysis of molybdenite: testing spatial restrictions for reliable Re–Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochim Cosmochim Acta 68:3897–3908CrossRefGoogle Scholar
  56. Seltmann R, Schilka W (1995) Late Variscan crustal evolution in the Altenberg-Teplice caldera. Evidence from new geochemical and geochronological data. Terra Nostra 95/7:120–124Google Scholar
  57. Seltmann R, Müller A, Schilka W (2001) Geochemical characteristics of the rapakivi-textured porphyritic microgranites in the Altenberg–Teplice caldera. Piestrzynski A et al (eds) Mineral deposits at the beginning of the 21st century. Proceedings of the joint sixth biennial SGA-SEG meeting, Krakow, Poland, 26–29 August 2001, Swets & Zeitlinger Publishers, Lisse, pp 481–484Google Scholar
  58. Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53CrossRefGoogle Scholar
  59. Smoliar MI, Walker RJ, Morgan JW (1996) Re–Os isotope constraints on the age of Group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102CrossRefGoogle Scholar
  60. Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  61. Stein HJ (2006) Low-rhenium molybdenite by metamorphism in northern Sweden: recognition, genesis, and global implications. Lithos 87:300–327CrossRefGoogle Scholar
  62. Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova 13:479–486CrossRefGoogle Scholar
  63. Stein H, Scherstén A, Hannah J, Markey R (2003) Sub-grain scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochim Cosmochim Acta 67:3673–3686CrossRefGoogle Scholar
  64. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralisation des Erzgebirges. Freib Forsch Hefte C 370:1–85Google Scholar
  65. Thomas R (1989) Untersuchungen von Schmelzeinschlüssen und ihre Anwendung zur Lösung lagerstättengeologischer und petrologischer Problemstellungen. Diss B, Bergakademie Freiberg, p 131Google Scholar
  66. Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: volatile contents and entrapment conditions. J Petrol 38:1753–1765CrossRefGoogle Scholar
  67. Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139:394–401CrossRefGoogle Scholar
  68. Thomas R, Förster H-J, Heinrich W (2003) The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid inclusion study. Contrib Mineral Petrol 144:457–472Google Scholar
  69. Thomas R, Förster H-J, Rickers K, Webster JD (2005) Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study. Contrib Mineral Petrol 148:582–601CrossRefGoogle Scholar
  70. Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Förster H-J, Heinrich W, Davidson P (2006) The transition from peraluminous to peralkaline granitic melts in nature: evidence from melt inclusions and accessory minerals. Lithos 91:137–149CrossRefGoogle Scholar
  71. Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkondatierungen zur Bestimmung des Intrusionsalters des Niederbobritzschers Granites. Terra Nostra 97/8:183–184Google Scholar
  72. Tichomirowa M, Berger H-J, Koch EA, Belyatski BV, Götze J, Kempe U, Nasdala L, Schaltegger U (2001) Erzgebirge (Central Europe Variscides)—constraints on origin of the rocks and Precambrian to Ordivician magmatic events in the Variscan foldbelt. Lithos 56:303–332CrossRefGoogle Scholar
  73. Velichkin VI, Chernyshov IV, Simonova LI, Yudintsev SV (1994) Geotectonic position, petrochemical and geochronological features of the Younger Granite Complex in the Krusne hory (Erzgebirge) of the Bohemian Massif. J Czech Geol Soc 39:116Google Scholar
  74. Warkus F (1997) U–Pb Altersdatierungen an Graniten des Erzgebirges und deren geochemische Einordnung. Dipl Thesis, University Göttingen, p 68Google Scholar
  75. Werner O (1998) K–Ar- und Rb–Sr-Chronologie spätvariszischer Krustenkonvergenz—Bilanzierung des Wärme—und Stofftransportes im Erzgebirge. Ph.D. thesis, University of Heidelberg, p 199Google Scholar
  76. Werner O, Lippolt HJ (2000) White-mica 40Ar/39Ar ages of Erzgebirge metamorphic rocks: simulating the chronological results by a model of Variscan crustal imbrication. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling on the Variscan belt. Geol Soc Spec Publ 179:323–336Google Scholar
  77. Werner O, Lippolt HJ, Hess JC (1997) 40Ar/39Ar- and Rb–Sr-investigations of the cooling history of metamorphic and plutonic rocks in the Erzgebirge (Mid-European Saxothuringian). Terra Nova 9(Abstr Suppl 1):106–107Google Scholar
  78. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: Ziegler JF (ed) The stopping and range of ions in matter, vol 1. PergamonGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rolf L. Romer
    • 1
    Email author
  • Rainer Thomas
    • 1
  • Holly J. Stein
    • 2
    • 3
  • Dieter Rhede
    • 1
  1. 1.GeoForschungsZentrum PotsdamTelegrafenbergPotsdamGermany
  2. 2.AIRIE Program, Department of GeosciencesColorado State UniversityFort CollinsUSA
  3. 3.Geological Survey of NorwayTrondheimNorway

Personalised recommendations