Mineralium Deposita

, Volume 41, Issue 5, pp 505–516 | Cite as

40Ar/39Ar and K–Ar geochronology of magmatic and hydrothermal events in a classic low-suphidation epithermal bonanza deposit: El Peñon, northern Chile

  • Gloria Arancibia
  • Stephen J. Matthews
  • Paula Cornejo
  • Carlos Pérez de Arce
  • José I. Zuluaga
  • Stabro Kasaneva
Article

Abstract

The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (∼59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (∼55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (∼48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.

Keywords

K–Ar and 40Ar/39Ar geochronology Epithermal gold Low-sulphidation Chile 

References

  1. Arancibia G, Matthews S, Pérez de Arce, C (2006) K–Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, northern Chile: tectonic and climatic relations. J Geol Soc (Lond) 163:107–118CrossRefGoogle Scholar
  2. Cathles LM, Erendi AH, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771Google Scholar
  3. Chesley JT, Halliday AN, Snee LW, Mezger K, Sherperd TJ, Scrivener RC (1993) Thermochronology of the Cornubian batholith: implications for pluton emplacement and protracted hydrothermal mineralization. Geochim Cosmochim Acta 57:1817–1837CrossRefGoogle Scholar
  4. Cornejo P, Matthews S (2001) Evolution of Magmatism from the Uppermost Cretaceous to Oligocene, and its relationship to changing tectonic regime, in the Inca de Oro-El Salvador area (northern Chile). In: III South American Symposium on Isotope Geology, Soc Geol Chile, Santiago, Chile, Extended Abstracts 558–561Google Scholar
  5. Cornejo P, Matthews S, Pérez de Arce C (2003) The “K–T” Compressive Deformation Event in Northern Chile (24–27°). In: 10° Congreso Geológico Chileno, Concepción Chile (CD-Rom)Google Scholar
  6. Deino AL, Potts R (1992) Age probability spectra for examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, southern Kenya rift. Quat Int 13/14:47–53CrossRefGoogle Scholar
  7. Dong G, Morrison GW (1995) Adularia in epithermal viens, Queensland: morphology, structural state and origin. Mineralium Deposita 30:11–19CrossRefGoogle Scholar
  8. García F (1967) Geología del Norte Grande de Chile. In: Simposium sobre el Geosinclinal Andino. Soc Geol Chile Pub 3:p138Google Scholar
  9. Groff J, Heizler, Matthew T, McIntosh William C, Norman DI (1997) 40Ar/39Ar dating and mineral paragenesis for Carlin-type gold deposits along the Getchell trend, Nevada: evidence for cretaceous and tertiary gold mineralization. Econ Geol 92:601–622Google Scholar
  10. Love D, Clark A, Hodgson C, Mortensen J, Archibald D, Farrar E (1998) The timing of adularia–sericite-type mineralization and alunite–kaolinite-type alteration, Mout-Skukum epithermal gold deposit, Yukon territory, Canada. 40Ar–39Ar and U–Pb geochronology. Econ Geol 93:437–462Google Scholar
  11. McDougall I, Harrison T (1999) Geochronology and termochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, p 269Google Scholar
  12. McKee E, Noble D (1989) Cenozoic tectonic events, magmatic pulses, and base and precious-metal mineralization in the Central Andes. In: Ericksen GE, Cañas Pinochet MT, Reinemund JA (eds). Geology of the Andes and its relation to hydrocarbon and mineral resources. Houston, Texas, Circum-Pacific Council for Energy and Mineral Resources Earth Sciences Series 11:189–194Google Scholar
  13. Marinovic N, Smoje I, Maksaev V, Hervé M, Mpodozis C (1995) Hoja Aguas Blancas, Región de Antofagasta, Carta Geológica de Chile N° 70, escala 1:250.000. Ser Nac de Geol Min, SantiagoGoogle Scholar
  14. Marinovic N, García M (1999) Hoja Pampa Unión, Región de Antofagasta, Mapa Geológico de Chile N° 9, escala 1:100.000. Ser Nac de Geol Min, SantiagoGoogle Scholar
  15. Parsons I, Brown WL, Smith JV (1999) 40Ar/39Ar thermochronology using alkali feldspars: real thermal history or mathematical mirage of microtexture? Contrib Mineral Petrol 136:92–110CrossRefGoogle Scholar
  16. Pérez M (1999) Alteración Hidrotermal en el Depósito Epitermal de Au–Ag El Peñon, II Región, Antofagasta. Memoria de título (thesis), Universidad de Chile, p 109Google Scholar
  17. Robbins CH (2000) Geology of the El Peñon gold–silver deposit, northern Chile. In: Geology and ore deposits 2000: the Great Basin and beyond. JK Cluer, JG Price, EM Struhsacker, RF Hardyman, and CL Morris (eds) Geology Society of Nevada Symposium Proceedings p 219–232Google Scholar
  18. Sanematsu K, Watanabe K, Duncan R, Izawa E (2004) Mineralization ages using 40Ar/39Ar dating and the precipitation of gold in the Hishikari epithermal gold deposit, Japan. In: International Association of Volcanology and Chemistry Earth’s Interior (IAVCEI) General Assembly, Pucón, Chile. Abstr (CD-Rom)Google Scholar
  19. Sébrier M, Lavenu A, Fornari M, Soulas JP (1988) Tectonics and uplift in Central Andes (Peru, Bolivia and northern Chile) from Eocene to present. Géodynamique 3:85–106Google Scholar
  20. Scheuber E, González G (1999) Tectonics of the Jurassic—Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26°S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910CrossRefGoogle Scholar
  21. Sillitoe R, McKee E, Vila T (1991) Reconnaissance K–Ar geochronology of the Maricunga gold–silver belt, northern Chile. Econ Geol 86:1261–1270CrossRefGoogle Scholar
  22. Sillitoe R, McKee E (1996) Age of supergene oxidation and enrichment in the Chilean porphyry copper province. Econ Geol 21:164–179Google Scholar
  23. Tomlinson A, Blanco N (1997) Structural evolution and displacement history of the west fault systems, Precordillera, Chile: part 1, synmineral history. In: VIII Congreso Geológico Chileno, Antofagasta, III:1873–1877Google Scholar
  24. Warren I, Zuluaga J, Robbins C, Wulftang W, Simmons S (2004) Geology and geochemistry of epithermal Au–Ag mineralization in El Peñon district, northern Chile. In: Sillitoe RH, Perelló J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts, and updates. Soc Econ Geol Spec Publ 11:113–139Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gloria Arancibia
    • 1
  • Stephen J. Matthews
    • 1
  • Paula Cornejo
    • 1
  • Carlos Pérez de Arce
    • 1
  • José I. Zuluaga
    • 2
  • Stabro Kasaneva
    • 2
  1. 1.Servicio Nacional de Geología y MineríaSantiagoChile
  2. 2.Compañía Minera Meridian LimitadaAntofagastaChile

Personalised recommendations