Mineralium Deposita

, 41:339 | Cite as

The role of bitumen in strata-bound copper deposit formation in the Copiapo area, Northern Chile



In northern Chile, between 27 and 33°S, there are numerous deposits where residual petroleum is associated with Cu-(Ag) mineralisation (the most famous being El Soldado). All of these deposits are hosted by Lower Cretaceous volcanic or volcanoclastic facies along the axis of a former backarc basin. This close relationship suggests that the generation, migration and emplacement of hydrocarbons in the Cretaceous volcanic units is a regional process, associated with the evolution of the Cretaceous backarc basin and points to the importance of pyrobitumen as an exploration tool for similar Cu–(Ag) deposits. The present work analyses four small strata-bound copper deposits located along a north–south belt approximately 10 km east of Copiapó in northern Chile. These deposits are typically hosted by pyrobitumen-rich andesitic volcanic to volcanoclastic rocks intercalated with the marine carbonate Pabellón Formation, the youngest formation within the Chañarcillo Group. The strong genetic and spatial relationships between the pyrobitumen-rich lavas and the mineral deposits allow us to define this volcanic belt as the Ocoita-Pabellón Metallotect. Two hydrothermal events can be distinguished based on the mineralogical, textural, fluid inclusion and isotope data of ore and gangue and on the optical properties of residual petroleum. During the early event, petroleum was mobilised from the source rocks into the primary and secondary porosity of the lavas by Fe-rich hydrothermal fluids, which precipitated pyrite as an early sulphide phase. The second event is characterised by Cu-rich hydrothermal fluids, which induced three successive sub-stages of Cu-sulphide precipitation. The hydrothermal fluids chemically and thermally altered the first-stage bitumen, transforming it into pyrobitumen. The present work documents similarities between the Ocoita-Pabellón Metallotect and the El Soldado ore deposit and emphasises important differences. In the El Soldado host rocks, a petroleum reservoir existed prior to the arrival of the mineralising hydrothermal fluids, the framboidal pyrite was formed by assistance of bacteria, the S of the Cu sulphides was inherited from the pyrite, and the fluid source was basin connate-metamorphic brine. In the Ocoita-Pabellón Metallotect, the hydrocarbons were mobilised into the host rocks by hydrothermal fluids; the pyrite is epigenetic, the δ34S values of pyrite and copper sulphides are very different, with distinctive light δ34S signature of Cu sulphides (δ34S between −44.7 and −17.9‰), and the calculated δ18O of hydrothermal fluids indicates the participation of meteoric water in the late phases of the hydrothermal system.


Strata-bound Cu deposits Pyrobitumen Stable isotopes Volcanic-hosted Early Cretaceous Chile 


  1. Aberg G, Aguirre L, Levi B, Nystrom O (1984) Spreading subsidence and generation of ensialic marginal basins, an example from the early Cretaceous of Central Chile. In: Kokelaar BP, Howels MF (eds) Marginal basin geology. Geological Society of London, special publication, vol 16. Blackwell Scientific, London, pp 185–193Google Scholar
  2. Arévalo C (1994) Mapa geológico del cuadrángulo Los Loros. Documentos de Trabajo N° 6. SERNAGEOMIN. Scale 1:100.000Google Scholar
  3. Arévalo C (1995) Mapa geológico de la Hoja Copiapó, Región de Atacama. Documentos de Trabajo N° 6. SERNAGEOMIN. Scale 1:100.000Google Scholar
  4. Arévalo C (1999) The Coastal Cordillera/Precordillera boundary in the Copiapó area, northern Chile and the structural setting of the Candelaria Cu–Au deposit. Ph.D. thesis, University of Kingston, p 205Google Scholar
  5. Barker CE, Pawlewicz MJ (1994) Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods. In: Mukhopadhyay PK, Dow WG (eds) Vitrinite reflectance as a maturity parameter: applications and limitations. ACS Symp Ser 570:216–229Google Scholar
  6. Boric R, Holmgren C, Wilson NSF, Zentilli M (2002) The geology of the El Soldado manto-type Cu (Ag) deposit, Central Chile. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 2. PGC, Adelaide, pp 163–184Google Scholar
  7. Bustin RM, Cameron A, Grieve D, Kalkreuth W (1985) Coal petrology, its principles and applications. Geological Association of Canada, short course notes, 2nd edn. Geological Association of Canada, St. John’s, p 230Google Scholar
  8. Cisternas ME, Diaz L (1990) Geologic evolution of the Atacama basin during the Lower Cretaceous. In: Fontboté L, Amstutz CG, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Berlin Heidelberg New York, pp 496–504Google Scholar
  9. Cisternas ME, Frutos J (1996) Importancia metalogénica del volcanismo extensional del Cretácico Inferior en la Región de Copiapó, Chile. In: XXXIX Congresso Brasileiro de Geologia, vol 7. Anais, Salvador, pp 303–306Google Scholar
  10. Cisternas ME, Frutos J, Spiro B, Galindo E (1999a) Lavas con bitumen en el Cretácico Inferior de Copiapó: petroquímica e importancia metalogénica. Rev Geol Chile 26(2):205–226CrossRefGoogle Scholar
  11. Cisternas ME, Haggan T, Parnell J (1999b) Andesita-hosted copper sulphide-bitumen mineralization in a back arc Andean Basin, North Central Chile. In: Stanley CJ et al. (eds) Mineral deposits: processes to processing, vol 1. Balkema, Rotterdam, pp 223–226Google Scholar
  12. Cucurella J, Canut de Bon C, Cisternas ME (2005) Pyrobitumen related to silver–copper deposits in a Cretaceous volcanic–sedimentary sequence: Talcuna district, Coquimbo, Chile. Mineral Pol 36(1):21–29Google Scholar
  13. Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grown halite crystal in the system NaCl–H2O, NaCl–H2O–KCl, NaCl–H2O–MgCl2, and NaCl–H2O–CaCl2. Geochim Cosmochim Acta 54:591–601CrossRefGoogle Scholar
  14. Goodarzi F, Gentis T, Jackson G, Macqueen RW (1993) Optical characteristics of head-effected bitumens from the Nanisivik mine, NW Baffin Island, Arctic Canada. Energy Resour 15:359–376Google Scholar
  15. Haggan T, Parnell J, Cisternas ME (2003) Fluid history of andesite-hosted CuS-bitumen mineralization, Copiapó district, North Central Chile. J Geochem Explor 78–79:631–633CrossRefGoogle Scholar
  16. Hermosilla J (2001) Rol de la materia orgánica en la formación de los depósitos minerales del Metalotecto Ocoita-Pabellón. Copiapó, III Región de Atacama. Undergraduate Thesis, Departamento de Ciencias de la Tierra, Universidad de Concepción, p 213Google Scholar
  17. Hoefs J (1987) Stable isotope geochemistry. Springer, Berlin Heidelberg New York, p 236Google Scholar
  18. Hunt JM (1978) Characterization of bitumens and coals. Am Assoc Pet Geol Bull 54:249–273Google Scholar
  19. Jacob H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11:65–79CrossRefGoogle Scholar
  20. Landis CR, Castaño JR (1995) Maturation and bulk chemical properties of a suite of solid hydrocarbons. Org Geochem 22:137–149CrossRefGoogle Scholar
  21. Larson R, Pitman WC (1972) World-wide correlation of Mesozoic magnetic anomalies and its applications. GSA Bull 83:3645–3662CrossRefGoogle Scholar
  22. Lewan MD (1983) Effects of thermal maturation on stable carbon isotopes as determined by hydrous pyrolisis of Woodford shale. Geochim Cosmochim Acta 47:1471–1480CrossRefGoogle Scholar
  23. Longstaffe FJ, Ayalon A (1987) Oxygen-isotope studies of clastic diagenesis in the Lower Cretaceous Viking Formation, Alberta: implications for the role of meteoric water. In: Marshall JD (ed) Diagenesis of sedimentary sequences. Geological Society, special publication, vol 36. Oxford University Press, Oxford, pp 277–296Google Scholar
  24. Marschik R, Fontboté L (2001) The Punta del Cobre Formation. Punta del Cobre-Candelaria area, northern Chile. J South Am Earth Sci 14:401–433CrossRefGoogle Scholar
  25. Marschik R, Fontignie D, Chiaradia M, Voldet P (2003) Geochemical and Sr–Nd–O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′ S), Chile. J South Am Earth Sci 16:381–398CrossRefGoogle Scholar
  26. Mpodozis C, Ramos V (1990) The Andes of Chile and Argentina. Circum Pacific council for energy and minerals resources. Earth Sci Ser 11:59–90Google Scholar
  27. Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67:551–578Google Scholar
  28. O’Neil JR, Clayton N, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  29. Potter RW, Clynne MA, Brown DL (1978) Freezing point depression of aqueous sodium solutions. Econ Geol 73:233–244Google Scholar
  30. Rye RO, Ohmoto H (1974) Sulphur and carbon isotopes and ore genesis. A review. Econ Geol 69:826–842Google Scholar
  31. Segerstrom K (1960) Cuadrángulo Quebrada Paipote. Inst Inves Geol Carta Geológica de Chile.Vol.7, N° 1, scale 1:50.000Google Scholar
  32. Segerstrom K (1968) Geología de las hojas Copiapó y Ojos del Salado. Provincia de Atacama. Inst Inv Geol Boletín 24:58Google Scholar
  33. Thomas H (1958) Geología de la Cordillera de la Costa entre el valle de La Ligua y la cuesta Barriga. Ins Inv Geol Boletín 2:86Google Scholar
  34. Ullrich TD, Clark AH, Kyser KT (2001) The Candelaria Cu–Au deposit, III region, Chile: product of long-term mixing of magmatic–hydrothermal and evaporite-source fluids. GSA annual meeting, Boston, 1–10 November 2001Google Scholar
  35. Vaughan APM (1995) Circum-pacific mid-Cretaceous deformation and uplift: a superplume-related event? Geology 23:491–494CrossRefGoogle Scholar
  36. Vergara M, Nystrom JO (1996) Geochemical features of Lower Cretaceous backarc lavas in the Andean Cordillera, Central Chile (31–34°S). Rev Geol Chile 23(1):97–106Google Scholar
  37. Wilson NSF (1998) The role of petroleum in the formation of the El Soldado copper deposit, Chile: hydrothermal replacement of a biodegraded petroleum reservoir. Ph.D. Thesis, Dalhousie University, p 418Google Scholar
  38. Wilson NSF (2000) Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile. Int J Coal Geol 43:53–82CrossRefGoogle Scholar
  39. Wilson NSF, Zentilli M (1999) The role of organic matter in the genesis of the El Soldado volcanic-hosted manto-type Cu deposit, Chile. Econ Geol 94:1115–1136CrossRefGoogle Scholar
  40. Wilson NSF, Zentilli M, Reynolds PH, Boric R (2003a) 40Ar/39Ar geochronology of K-feldspar from the El Soldado manto-type copper deposit, Chile. Chem Geol Isot Geosci Sect 197:161–176Google Scholar
  41. Wilson NSF, Zentilli M, Spiro B (2003b) A sulfur, carbon, oxygen, and strontium isotope study of the volcanic-hosted El Soldado manto-type copper deposit, Chile: the essential role of bacteria and petroleum. Econ Geol 98(1):163–174CrossRefGoogle Scholar
  42. Wilson NSF, Zentilli M (2006) Association of pyrobitumen with copper mineralization from the Uchumi and Talcuna districts, central Chile. Int J Coal Geol 65(1–2):158–169CrossRefGoogle Scholar
  43. Zentilli M, Boric R, Munizaga F, Graves MC (1994) Petroleum involvement in the genesis of some strata-bound copper deposits of Chile, VII Congreso Geológico Chileno, vol 2. Concepción pp 1542–1546Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Instituto de Geología Económica Aplicada (GEA)Universidad de ConcepciónConcepciónChile
  2. 2.SKM Minmetal Ltda.SantiagoChile

Personalised recommendations