Advertisement

Mineralium Deposita

, Volume 40, Issue 1, pp 59–75 | Cite as

Stable isotope geochemistry of the Archean Val-d‘Or (Canada) orogenic gold vein field

  • Georges BeaudoinEmail author
  • David Pitre
Article

Abstract

A systematic study of the auriferous quartz veins of the Val-d’Or vein field, Abitibi, Quebec, Canada, demonstrates that the C, O, S isotope composition of silicate, carbonate, borate, oxide, tungstate and sulphide minerals have a range in composition comparable to that previously determined for the whole Superior Province. The oxygen isotope composition of quartz from early quartz–carbonate auriferous veins ranges from 9.4 ‰ to 14.4 ‰ whereas later quartz-tourmaline-carbonate veins have δ18Oquartz values ranging from 9.2 ‰ to 13.8 ‰. Quartz-carbonate veins have carbonate (δ18O: 6.9–12.5 ‰; δ13C: −6.2– −1.9 ‰) and pyrite (δ34S: 1.2 and 1.9 ‰) isotope compositions comparable to those of quartz-tourmaline-carbonate veins (δ18O: 7.9–11.7 ‰; δ13C: −8.0 – −2.4 ‰; δ34S: 0.6–6.0 ‰). δ18Oquartz values in quartz-tourmaline-carbonate veins have a variance comparable to analytical uncertainty at the scale of one locality, irrespective of the type of structure, the texture of the quartz or its position along strike, across strike or down-dip a vein. In contrast, the oxygen isotope composition of quartz in quartz-tourmaline-carbonate veins displays a regional distribution with higher δ18O values in the south-central part of the vein field near the Cadillac Tectonic Zone, and which δ18O values decrease regularly towards the north. Another zone of high δ18O values in the northeast corner of the region and along the trace of the Senneville Fault is separated by a valley of lower δ18O values from the higher values near the Cadillac Tectonic Zone. Oxygen isotope isopleths cut across lithological contacts and tectonic structures. This regional pattern in quartz-tourmaline-carbonate veins is interpreted to be a product of reaction with country rocks and mixing between (1) a deep-seated hydrothermal fluid of metamorphic origin with minimum δ18O=8.5 ‰, δ13C=0.6 ‰ and δ34S=−0.4 ‰, and (2) a supracrustal fluid, most likely Archean seawater with a long history of water-rock exchange and with maximum δ18O=3.9 ‰, δ13 C=−5.6 ‰ and δ34S=5.0 ‰.

Keywords

Stable isotopes Gold Vein Hydrothermal fluid Mixing 

Notes

Acknowledgements

We thank F. Robert (Barrick Gold) for his early guidance in the field and his continued interest in the project. R. Kerrich and C. Lerouge offered detailed and constructive comments that improved the paper significantly. The research was funded by the Fonds québécois de la recherche sur la nature et les technologies and the National Science and Engineering Research Council of Canada. D. Pitre was the recipient of a scholarship from the National Science and Engineering Research Council of Canada.

References

  1. Beaudoin G, Gagnon Y (2001) Oxygen isotope cross-section of the synvolcanic VMS hydrothermal system of the Val-d’Or camp. GAC-MAC Annual Meeting, Program with Abstract 26:9Google Scholar
  2. Beaudoin G, Therrien R (1999) 3D modelling of crustal-scale hydrothermal fluid flow in the Val-d’Or auriferous vein field. GAC-MAC Annual meeting Program with abstracts 24:8Google Scholar
  3. Beaudoin G, Taylor BE, Sangster DF (1992) Silver-lead-zinc veins and crustal hydrology during Eocene extension, southeastern British Columbia, Canada. Geochim Cosmochim Acta 56:3513–3529CrossRefGoogle Scholar
  4. Böhlke JK, Kistler RW (1986) Rb-Sr K-Ar and stable isotope evidence for the ages and sources of fluid components of gold-bearing quartz veins in the northern Sierra Nevada Foothills Metamorphic Belt California. Econ Geol 81:296–322Google Scholar
  5. Boullier A-M, Robert F (1992) Paleoseismic events recorded in Archaean gold-quartz vein networks, Val d’Or, Abitibi, Quebec, Canada. J Struct Geol 14:161–179CrossRefGoogle Scholar
  6. Burrows DR, Wood PC, Spooner ETC (1986) Carbon isotope evidence for a magmatic origin for Archean gold-quartz vein ore deposits. Nature 321:851–854CrossRefGoogle Scholar
  7. Card KD, Ciesielski A (1986) DNAG#1. Subdivisions of the Superior Province of the Canadian shield. Geosci Canada 13:5–13Google Scholar
  8. Claoué-Long JC, King RW, Kerrich R (1990) Archaean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralisation. Earth Planet Sci Lett 98:109–128CrossRefGoogle Scholar
  9. Claoué-Long JC, King RW, Kerrich R (1992) Reply to comment by F Corfu and DW Davis on “Archaean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralisation”. Earth Planet Sci Lett 106:601–609CrossRefGoogle Scholar
  10. Clayton RN, Kieffer SW (1991) Oxygen isotopic thermometer calibrations. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society, Special Publication No. 3, v. pp 3–10Google Scholar
  11. Clayton RN, Mayeda TK (1963) The use of bromide pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52CrossRefGoogle Scholar
  12. Corfu F, Davis DW (1991) Comment on “Archaean hydrothermal zircon in the Abitibi Greenstone Belt: constraints on the timing of gold mineralisation” by JC Claoué-Long, RW King and R Kerrich, Earth Planet Sci Lett 104:545–552Google Scholar
  13. Couture J-F, Pilote P, Machado N, Desrochers J-P (1994) Timing of gold mineralization in the Val-d’Or district, southern Abitibi Belt: evidence for two distinct mineralizing events. Econ Geol 89:1542–1551Google Scholar
  14. Cox SF, Ruming K (2004) The St Ives mesothermal gold system, Western Australia—a case of golden aftershocks? J Struct Geol 26:1109–1125CrossRefGoogle Scholar
  15. Cox SF, Knackstedt MA, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. In: Richards JP, Tosdal RM, (eds) Structural controls on ore genesis, Rev Econ Geol 14:1–24Google Scholar
  16. Daigneault R (1996) Couloirs de déformation de la Sous-Province de l’Abitibi. Ministère des Ressources naturelles du Québec, Québec, MB 96–33, p 115Google Scholar
  17. Desrochers JP, Hubert C (1996) Structural evolution and early accretion of the Archean Malartic composite block, southern Abitibi greenstone belt, Quebec, Canada. Can J Earth Sci 33:1556–1569Google Scholar
  18. Eisenlohr BN, Groves DI, Partington GA (1989) Crustal-scale shear zones and their significance to Archean gold mineralization in Western Australia. Miner Deposita 24:1–8CrossRefGoogle Scholar
  19. Feng R, Kerrich R, McBride S, Farrar E (1992) 40 Ar/39 Ar age constraints on the thermal history of the Archean Abitibi Greenstone Belt and the Pontiac Subprovince: implications for terrane collision, differential uplift and overprinting of gold deposits. Can J Earth Sci 29:1389–1411Google Scholar
  20. Gaboury D, Carrier A, Crevier M, Pelletier C, Sketchley DA (2001) Predictive distribution of fault-filled and extensional veins: example from the Sigma gold mine, Abitibi Subprovince, Canada. Econ Geol 96:1397–1405CrossRefGoogle Scholar
  21. Gebre-Mariam M, Groves DI, McNaughton NJ, Mikucki EJ, Vearncombe JR (1993) Archaean Au-Ag mineralisation at Racetrack, near Kalgoorlie, Western Australia: a high crustal-level expression of the Archaean composite lode-gold system. Miner Deposita 28:375–387Google Scholar
  22. Goldfarb RJ, Newberry RJ, Pickthorn WJ, Gent CA (1991) Oxygen, hydrogen, and sulfur isotope studies in the Juneau Gold Belt, southestern Alaska: constraints on the origin of hydrothermal fluids. Econ Geol 86:66–80Google Scholar
  23. Golding SD, Wilson AF (1983) Geochemical and stable isotope studies of the No. 4 Lode, Kalgoorlie, Western Australia. Econ Geol 78:438–450Google Scholar
  24. Green AG, Milkreit B, Mayrand LJ, Ludden JN, Hubert C, Jackson SL, Sutcliffe RH, West GF, Verpaelst P, Simard A (1990) Deep structure of an Archean greenstone terrane. Nature 344:327–330CrossRefGoogle Scholar
  25. Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27CrossRefGoogle Scholar
  26. Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits.In: Hagemann SG, Brown PE (eds) Gold in 2000, Reviews in economic geology, The Society of Economic Geologists, vol. 13, pp 9–68Google Scholar
  27. Hagemann SG, Gebre-Mariam M, Groves DI (1994) Surface-water influx in shallow-level Archean lode-gold deposits in Western Australia. Geology 22:1067–1070CrossRefGoogle Scholar
  28. Hanes JA, Archibald DA, Hodgson CJ, Robert F (1992) Dating of Archeran auriferous quartz vein deposits in the Abitibi Greenstone Belt, Canada: 40Ar/39Ar evidence for a 70- to 100-m.y.-time gap between plutonism-metamorphism and mineralization. Econ Geol 87:1849–1861Google Scholar
  29. van Hees EHP, Shelton KL, McMenamy TA, Ross LM, Cousens BL, Falk H, Robb ME, Canam TW (1999) Metasedimentary influence on metavolcanic-rock-hosted greenstone gold deposits: Geochemistry of the Giant mine, Yellowknife, Northwest Territories, Canada. Geology 27:71–74CrossRefGoogle Scholar
  30. Hoefs J (1997) Stable isotope geoochemistry, 4th edn. Springer, Berlin Heidelberg New York, p 201Google Scholar
  31. Hubert C, Trudel P, Gelinas L (1984) Archean wrench fault tectonics and structural evolution of the Blake River Group, Abitibi Belt, Quebec. Can J Earth Sci 21:1024–1032Google Scholar
  32. Jemielita RA, Davis DW, Krogh TE (1990) U-Pb Evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature 346:831–834CrossRefGoogle Scholar
  33. Kerrich R (1983) Geochemistry of gold deposits in the Abitibi Greenstone Belt. Can Inst Min Metall, Spec Vol 27:75Google Scholar
  34. Kerrich R (1987) The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks. Mineralogical Association of Canada, Short Course Handbook 13:pp 287–336Google Scholar
  35. Kerrich R (1990) Carbon-isotope systematics of Archean Au-Ag vein deposits in the Superior Province. Can J Earth Sci 27:40–56Google Scholar
  36. Kerrich R, Cassidy KF (1994) Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation Archean to present: a review. Ore Geol Rev 9:263–310CrossRefGoogle Scholar
  37. Kerrich R, Fryer BJ (1979) Archaean precious-metal hydrothermal systems, Dome Mine, Abitibi greenstone belt; II, REE and oxygen isotope relations. Can J Earth Sci 16:440–458Google Scholar
  38. Kerrich R, Ludden J (2000) The role of fluids during formation and evolution of the southern Superior Province lithosphere: an overview. Can J Earth Sci 37:135–164CrossRefGoogle Scholar
  39. Kerrich R, Watson GP (1984) The Macassa Mine Archean lode gold deposit, Kirkland Lake, Ontario: geology, patterns of alteration and hydrothermal regimes. Econ Geol 79:1104–1130Google Scholar
  40. Kerrich R, Wyman D (1990) Geodynamic setting of mesothermal gold deposits. An association with accretionary tectonic regimes. Geology 18:882–885CrossRefGoogle Scholar
  41. Kerrich R, Fryer BJ, King RW, Willmore LM, van Hees E (1987) Crustal outgassing and LILE enrichment in major lithosphere structures, Archean Abitibi greenstone belt: evidence on the source reservoir from strontium and carbon isotope tracers. Contrib Mineral Petr 97:156–168CrossRefGoogle Scholar
  42. Kontak DJ, Kerrich R (1997) An isotopic (C, O, Sr) study of vein gold deposits in the Meguma Terrane, Nova Scotia: implication for source reservoirs. Econ Geol 92:161–180Google Scholar
  43. Kotzer TG, Kyser TK, King RW, Kerrich R (1993) An empirical oxygen- and hydrogen-isotope geothermometer for quartz-tourmaline and tourmaline-water. Geochim Cosmochim Acta 57:3421–3426CrossRefGoogle Scholar
  44. Lao K, Perreault G (1985) Cl-rich and S-rich fluids related to the Archean gold deposits in the Val-d’Or region, NW Quebec, Geological Association of Canada-Mineralogical Association of Canada Meeting, Abstracts with program 12:61Google Scholar
  45. Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140CrossRefGoogle Scholar
  46. McCrea M (1950) On the isotope chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  47. McCuaig TC, Kerrich R (1998) T-T-t deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geol Rev 335:1–72Google Scholar
  48. Melling DR, Taylor RP, Watkinson DH (1988) Lithogeochemistry and light stable isotope (carbon, oxygen and sulphur) geochemistry of hydrothermal alteration and breccia veins from the Cameron Lake gold deposit northwestern Ontario. Ontario Geological Survey Miscellaneous Paper 140, pp 239–251Google Scholar
  49. Morasse S, Wasteneys HA, Cormier M, Helmstaedt H, Mason R (1995) A pre-2686 intrusion-related gold deposit at the Kiena mine, Val d’Or, Québec, southern Abitibi subprovince. Econ Geol 90:1310–1321Google Scholar
  50. Nesbitt BE, Muehlenbachs K (1995) Geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia. Geol Soc Am Bull 107:1033–1050CrossRefGoogle Scholar
  51. Nesbitt BE, Muehlenbachs K, Murowchick JB (1989) Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. Econ Geol 84:1489–1506Google Scholar
  52. Neumayer P, Hagemann SG (2002) Hydrothermal fluid evolution within the Cadillac tectonic zone, Abitibi greenstone belt, Canada: relationship to auriferous fluids in adjacent second- and third-order shear zones. Econ Geol 97:1203–1225CrossRefGoogle Scholar
  53. Neumayer P, Hagemann SG, Couture J-F (2000) Structural setting, textures, and timing of hydrothermal vein systems in the Val d’Or camp, Abitibi, Canada: implications for the evolution of transcrustal, second- and third-order fault zones and gold mineralization. Can J Earth Sci 37:95–114CrossRefGoogle Scholar
  54. Newton RC (1992) Charnockitic alteration: evidence for CO2 infiltration in granulite facies metamorphism. J Metamorph Geol 10:383–400Google Scholar
  55. O’Hara KD, Yang X-Y, Guoyuan X, Li Z (1997) Regional δ18O gradients and fluid-rock interaction in the Altay accretionary complex northwest China. Geology 25:443–446CrossRefGoogle Scholar
  56. Olivo GR, Williams-Jones AE (2002) Genesis of the auriferous C quartz-tourmaline vein of the Siscoe mine, Val d’Or district, Abitibi subprovince, Canada: structural, mineralogical and fluid inclusion constraints. Econ Geol 97:929–947CrossRefGoogle Scholar
  57. Pilote P, Moorhead J, Mueller W (1998) Développement d’un arc volcanique, la région de Val-d’Or, Ceinture de l’Abitibi - Volcanologie physique et évolution métallogénique, Geological Association of Canada-Mineralogical Association of Canada Meeting, Field guidebook A2, 104 pGoogle Scholar
  58. Pitre D (2000) Zonation isotopique à l’échelle d‘un champ filonien aurifère: le camp mininer de Val-d’Or, Abitibi, Québec. M.Sc. thesis, Université Laval, Québec, 154 pGoogle Scholar
  59. Robert F (1989) Internal structure of the Cadillac tectonic zone southeast of Val d’Or, Abitibi greenstone belt, Quebec. Can J Earth Sci 26:2661–2675Google Scholar
  60. Robert F (1994) Vein fields in gold districts: the example of Val-d’Or, southeastern Abitibi province. Current Research Part C, Geological Survey of Canada, v. pp 295–302Google Scholar
  61. Robert F, Brown AC (1986a) Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec: Part I. Geologic relations and formation of the vein system. Econ Geol 81:578–592Google Scholar
  62. Robert F, Brown AC (1986b) Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec: Part II. Vein paragenesis and hydrothermal alteration. Econ Geol 81:593–616Google Scholar
  63. Robert F, Kelly WC (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma Mine, Abitibi Greenstone belt, Quebec, Canada. Econ Geol 82:464–1482Google Scholar
  64. Robert F, Boullier A-M, Firdaous K (1995) Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophys Res 100:12861–12879CrossRefGoogle Scholar
  65. Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150CrossRefGoogle Scholar
  66. Samson IM, Bas B, Holm PE (1997) Hydrothermal evolution of auriferous shear zones, Wawa, Ontario. Econ Geol 92:325–342Google Scholar
  67. Sauvé P, Imreh L, Trudel P (1993). Description des gîtes d’or de la région de Val-d’Or, Ministère de l’Énergie et des Ressources Naturelles du Quèbec, MM 91–03, 178 pGoogle Scholar
  68. Scott CR, Mueller WU, Pilote P (2002) Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: evolution from plume-related volcanism to arc rifting of SE Abitibi Greenstone Belt, Val d’Or, Canada. Precambrian Res 115:223–260CrossRefGoogle Scholar
  69. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:165–184Google Scholar
  70. Sibson RH, Scott J (1998) Sress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand. Ore Geol Rev 13:293–306CrossRefGoogle Scholar
  71. Sibson RH, Robert F, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16:551–555CrossRefGoogle Scholar
  72. So C-S, Yun S-T (1997) Jurassic mesothermal gold mineralization of the Samhwanghak Mine Youngdong area, Republic of Korea: constraints on hydrothermal fluid geochemistry. Econ Geol 92:60–80Google Scholar
  73. Tenthorey E, Cox SF (2003) Reaction-enhanced permeabiltiy during serpentinite dehydration. Geology 31:921–924CrossRefGoogle Scholar
  74. Tessier AC (1990) Structural evolution and host rock dilation during emplacement of gold-quartz veins at the Perron Deposit, Val-d’Or, Québec, unpublished, M.Sc. thesis, Queen’s University, 223ppGoogle Scholar
  75. Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on 18 O/16 O fractionation between coexisting serpentine and magnetite. Contrib Mineral Petr 32:165–185CrossRefGoogle Scholar
  76. Wesolowski D, Ohmoto H (1986) Calculated oxygen isotope fractionation factors between water and the minerals scheelite and powellite. Econ Geol 81:471–477Google Scholar
  77. Wong L, Davis DW, Krogh TE, Robert F (1991) U-Pb zircon and rutile chronology of Archean Greenstone formation and gold mineralization in the Val-d’Or Region Quebec. Earth Planet Sci Lett 104(2-4):325–336CrossRefGoogle Scholar
  78. Wood PC, Burrows DR, Thomas AV, Spooner ETC (1986) The Hollinger-McIntyre Au-quartz vein system, Timmins, Ontario, Canada: Geologic characteristics, fluid properties and light stable isotope geochemistry. In: Proceedings of Gold ’86 Symposium, pp 56–80Google Scholar
  79. Zweng PL, Mortensen JK, Dalrymple GB (1993) Thermochronology of the Camflo gold deposit, Malartic, Quebec: implications for magmatic underplating and the formation of gold-bearing quartz veins. Econ Geol 88:1700–1721Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Département de géologie et de génie géologiqueUniversité LavalQuebecCanada
  2. 2.Division LaRondeMines Agnico-Eagle LtéeCadillacCanada

Personalised recommendations