Advertisement

Marble-hosted sulfide ores in the Angouran Zn-(Pb–Ag) deposit, NW Iran: interaction of sedimentary brines with a metamorphic core complex

  • H. Albert Gilg
  • Maria Boni
  • Giuseppina Balassone
  • Cameron R. Allen
  • David Banks
  • Farid Moore
Article

Abstract

The Angouran Zn-(Pb–Ag) deposit, Zanjan Province, NW Iran, is located within the central Sanandaj-Sirjan Zone of the Zagros orogenic belt. The deposit has proven and estimated resources of 4.7 Mt of sulfide ore at 27.7% Zn, 2.4% Pb, and 110 g/t Ag, and 14.6 Mt of oxidized carbonate ores at 22% Zn and 4.6% Pb. It is hosted by a metamorphic core complex that is unconformably overlain by a Neogene volcanic and evaporite-bearing marine to continental sedimentary sequence. The sulfide orebody, precursor to the significant nonsulfide ores, is located at the crest of an open anticline at the contact between Neoproterozoic to Cambrian footwall micaschists and hanging wall marbles. 40Ar–39Ar data on muscovite from mineralized and unaltered footwall micaschists suggest a rapid Mid-Miocene exhumation of the metamorphic basement (∼20 Ma) and yield an upper age constraint for mineralization. The fine-grained sulfide ore is massive, replacive, often brecciated, clearly postmetamorphic and dominated by Fe-poor sphalerite, with minor galena, pyrite, anhydrite, quartz, muscovite, dolomite, and rare calcite. Sphalerite contains Na–Ca–Cl brine inclusions (23–25 mass% total dissolved solids) with homogenization temperatures of 180–70°C. Fluid inclusion chemistry (Na–K–Li–Ca–Mg–Cl–Br), ore geochemistry, S, and Pb isotope data suggest that the Angouran sulfide ore formed by the interaction of modified, strongly evaporated Miocene seawater and the lithotypes of an exhumed metamorphic core complex. Minor contributions of metals from Miocene igneous rocks cannot be excluded. Mineralization occurred in a collisional intra-arc setting with high heat flow, probably during the transition from an extensional to a compressional regime. The Angouran deposit may represent a new type of low-temperature carbonate-hosted Zn–Pb ore that is distinct from Mississippi Valley type and sedimentary-exhalative deposits.

Keywords

Miocene Fluid Inclusion Travertine Metamorphic Core Complex Thermochemical Sulfate Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are indebted to the Iranian Zinc Mines Development Company (IZMDC), R. Mohammadi Niaei, and S. Modabberi for generous help during field work. M. Sadeghi provided some samples during the early stage of this study. We would like to thank G. Chi (fluid inclusions) and M. Heizler (40Ar–39Ar chronology). Alwyn Annels and Farahnaz Daliran are acknowledged for discussions on the genesis of the Angouran deposits. M. Parente determined the fossils in the Qom limestones. The careful reviews by G. Borg and B. Lehmann are gratefully acknowledged.

References

  1. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretation. Tectonophysics 229:211–238CrossRefGoogle Scholar
  2. Alinia F (1989) Mineralogy and genesis of Zn–Pb deposit, Anguran, northwest Iran. Abstracts of the 28th International Geological Congress, Washington, DC, (abstract 28/1), p 31Google Scholar
  3. Al Ganad I, Lagny P, Lescuyer JL, Ramboz C, Touray JC (1994) Jabali, a Zn–Pb-(Ag) carbonate-hosted deposit associated with Jurassic rifting in Yemen. Miner Depos 29:44–56Google Scholar
  4. Annels AE, O’Donovan G, Bowles M (2003) New ideas concerning the genesis of the Angouran Zn–Pb deposit, NW Iran. Abstracts of the 26th Mineral Deposits Studies Group, University of Leicester, Leicester, pp 11–12Google Scholar
  5. Asadi HH, Hale M (2001) A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Comput Geosci 27:901–912CrossRefGoogle Scholar
  6. Asadi HH, Voncken JHL, Hale M, Kuhnel RA (1999) Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit. Miner Depos 35:656–671CrossRefGoogle Scholar
  7. Babakhani AR, Ghalamghash J (1990) Geological map of Iran, 1:100,000 series sheet Takht-e-Soleiman. Geological Survey of Iran, TehranGoogle Scholar
  8. Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origin of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789CrossRefGoogle Scholar
  9. Bariand P, Issakhanian V, Sadrzadeh M (1965) Preliminary metallogenetic map of Iran. Geological Survey of Iran Report No. 7, Tehran, pp 1–50Google Scholar
  10. Böhlke JK, Irwin JJ (1992) Laser microprobe analyses of Cl, Br, I and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225CrossRefGoogle Scholar
  11. Borg G, Daliran F (2004) Hypogene and supergene formation of sulphides and non-sulphides at the Angouran high-grade zinc deposit, NW-Iran. In: Abstract volume of Geoscience Africa 2004. University of the Witwatersrand, Johannesburg, pp 69–70Google Scholar
  12. Burnol L (1968) Contribution a l’etude des gisements de plomb et zinc de l’Iran. Essais de classification paragenetique. Geological Survey of Iran Report No. 11, pp 1–113Google Scholar
  13. Cooke DR, Bull SW, Large RR, McGoldrick PJ (2000) The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb–Zn (Sedex) deposits. Econ Geol 95:1–18Google Scholar
  14. Daliran F, Borg G (2003) A preliminary appraisal of the non-sulfide zinc deposit of Angouran, north-west Iran. In: Eliopoulos D et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 65–68Google Scholar
  15. Daliran F, Borg G (2005) Characterisation of the nonsulfide zinc ore at Angouran, northwestern Iran, and its genetic aspects. In: Jingwen M, Bierlein FP (eds) Mineral deposit research: meeting the global change, vol 2. Springer, Berlin Heidelberg New York, pp 913–916Google Scholar
  16. Daliran F, Hofstra A, Walther J, Stüben D (2002) Agdarreh & Zarshuran SRHDG deposits, Takab region, NW-Iran. Annual meeting of the Geological Society of America, Denver, pp 63–68Google Scholar
  17. Damm B (1968) Geologie des Zendan-i Suleiman und seiner Umgebung südöstliches Balqash-Gebirge Nordwest-Iran. Beiträge zur Archäologie und Geologie des Zendan-i Suleiman, Teil 1. Franz Steiner Verlag, Wiesbaden, pp 1–52Google Scholar
  18. Doe BR, Zartman RE (1979) Plumbotectonics, the Phanerozoic. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 22–70Google Scholar
  19. Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem Geol 109:149–175CrossRefGoogle Scholar
  20. Gazanfari F (1991) Metamorphic and igneous petrogenesis in NE of Takab with special regard to zinc mineralization in the Angouran mine. Unpubl. Master's thesis, University of Teheran (in Farsi)Google Scholar
  21. Ghazban F, McNutt RH, Schwarcz HP (1994) Genesis of sediment-hosted Zn–Pb–Ba deposits in the Irankuh district, Esfahan area, west-central Iran. Econ Geol 89:1262–1278CrossRefGoogle Scholar
  22. Gilg HA (1996) Fluid inclusion and isotope constraints on the genesis of high-temperature carbonate-hosted Pb–Zn–Ag deposits. Society of Economic Geologists Special Publication No. 4, pp 501–514Google Scholar
  23. Gilg HA, Boni M (2004) Stable isotope studies on Zn and Pb carbonates: could they play a role in mineral exploration? In: Pecchio M et al (eds) Applied mineralogy, developments in science and technology, vol 2. ICAM-BR, São Paulo, pp 781–784Google Scholar
  24. Gilg HA, Allen C, Balassone G, Boni M, Moore F (2003) The 3-stage evolution of the Angouran Zn “oxide”-sulfide deposit, Iran. In: Eliopoulos D et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, pp 77–80Google Scholar
  25. Glennie KW (2000) Cretaceous tectonic evolution of Arabia’s eastern plate margin: a tale of two oceans. In: Middle East models of Jurassic/Cretaceous carbonate systems. SEPM Special Publication No. 69, pp 9–20Google Scholar
  26. Goodfellow WD, Lydon JW, Turner RJW (1993) Geology and genesis of stratiform sediment-hosted (SEDEX) zinc–lead–silver sulfide deposits. In: Kirkham RV, Sinclair WD Thorp RI, Duke JM (eds) Mineral deposit models. Geological Association of Canada Special Paper No. 40, pp 201–252Google Scholar
  27. Grandia F, Canals A, Cardellach E, Banks DA, Perona J (2003) Origin of ore-forming brines in sediment-hosted Zn–Pb deposits of the Basque-Cantabrian basin, Northern Spain. Econ Geol 98:1397–1411CrossRefGoogle Scholar
  28. Haditsch JG (1990) Genese der Silizifierung iranischer Blei-Zink-Lagerstaetten. Berg Huettenmann Monatsh 135:197–203Google Scholar
  29. Hamdi B (1995) Precambrian–Cambrian deposits in Iran. In: Hushmandzadeh A (ed) Treatise of the geology of Iran, vol 20. Geological Survey of Iran, Tehran, pp 1–535Google Scholar
  30. Hirayama K (1968) Geological study on the Anguran Mine, northwestern part of Iran. Geological Survey of Japan Report No. 226, pp 1–26Google Scholar
  31. Hitzman MW, Reynolds NA, Sangster DF, Allen CR, Carman CE (2003) Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ Geol 98:685–714CrossRefGoogle Scholar
  32. Houtum-Schindler A (1881) Neue Angaben über die Mineralreichthümer Persiens und über die Gegend westlich von Zendjan. Jb kaiserl kgl Geol Reichsanst 31:169–190Google Scholar
  33. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins. Springer, Berlin Heidelberg New York, pp 99–117Google Scholar
  34. Ladame G (1945) Les ressources métallifères de l’Iran. Schweiz. Mineral Petrogr Mitt 25:165–298Google Scholar
  35. Lancelot J, Orgeval JJ, Fariss K, Zadeh H (1997) Lead isotope signature of major Iranian Zn–Pb ore deposits (Anguran, Duna, Irankuh, Mahdiabad, Nakhlak). Terra Nova 9(Abstr Suppl)1:550Google Scholar
  36. Leach DL, Sangster DF (1993) Mississippi valley-type lead–zinc deposits. In: Kirkham RV, Sinclair WD, Thorp RI, Duke JM (eds) Mineral deposit models. Geological Association of Canada Special Paper No. 40, pp 289–314Google Scholar
  37. Lotfi M, Karimi M (2004) Geology, mineralogy and ore-genesis of Bayche–Bagh (Ni–Co–As–Bi and base metals) vein-type deposit (NW-Zanjan, Iran). Abstract volume of the 32nd International Geological Congress (part 2, abstract 215-34), p 999Google Scholar
  38. Maanijou M (2002) Proterozoic metallogeny of Iran. Abstracts of the international symposium on the metallogeny of Precambrian shields, Kiev, 13–26 September 2002, p 2Google Scholar
  39. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochem 10:373–389CrossRefGoogle Scholar
  40. Megaw PKM (1998) Carbonate-hosted Pb–Zn–Ag–Cu–Au replacement deposits: an exploration perspective. In: Lentz DR (ed) Mineralized intrusion-related skarn systems. Mineralogical Association of Canada Short Course Series No. 26, Quebec, pp 337–358Google Scholar
  41. Mehrabi B, Yardley BWD, Cann JR (1999) Sediment-hosted disseminated gold mineralization at Zarshuran, NW Iran. Miner Depos 34:673–696CrossRefGoogle Scholar
  42. Minorskij V (1955) Abu-Dulaf Mis’ar Ibn Muhalhil’s Travels in Iran, Arabic text with an English translation and commentary. Cairo University Press, CairoGoogle Scholar
  43. Naumann E (1961) Geographische und geologische Einordnung. Teheran Forsch 1:15–32Google Scholar
  44. Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaCl2-H2O. I. The ice liquidus at 1 atm total pressure. Geochim Cosmochim Acta 54:603–610CrossRefGoogle Scholar
  45. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 517–611Google Scholar
  46. Purdy JW, Jäger E (1976) K–Ar ages on rock-forming minerals from the Central Alps. Mem Ist Geol Mineral Univ Padova 30:1–31Google Scholar
  47. Rahimpour-Bonab H, Kalantarzadeh Z (2005) Origin of secondary potash deposits; a case from Miocene evaporites of NW central Iran. J Asian Earth Sci 25:157–166CrossRefGoogle Scholar
  48. Rahimpour-Bonab H, Kazemi H (2003) Geology, mineralogy and genesis of the Gharah-Gol Boron deposit, SW of Zanjan, Iran. J Sci Univ Tehran 29:1–23Google Scholar
  49. Sadeghi M (2003) Mineralogy, geochemistry and fluid inclusion study of Anguran deposit, NW Iran. Abstracts of the 13th V.M. Goldschmidt Conference, Kurashiki, 7–12 September 2003, A406Google Scholar
  50. Sass-Gustkiewicz M (1996) Internal sediments as a key to understanding the hydrothermal karst origin of the Upper Silesian Zn–Pb ore deposits. In: Sangster DF (ed) Carbonate-hosted lead–zinc deposits. Society of Economic Geologists Special Publication No. 4, pp 171–181Google Scholar
  51. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  52. Stockli DF, Hassanzadeh J, Stockli LD, Axen G, Walker JD, Dewane TJ (2004) Structural and geochronological evidence for Oligo-Miocene intra-arc low-angle detachment faulting in the Takab-Zanjan area, NW Iran. Abstr Programs Geol Soc Am 36(5):319Google Scholar
  53. Velasco F, Herrero JM, Yusta I, Alonso JA, Seebold I, Leach D (2003) Geology and geochemistry of the Reocín zinc–lead deposit, Basque-Cantabrian Basin, Northern Spain. Econ Geol 98:1371–1396CrossRefGoogle Scholar
  54. Verma SP, Santoyo E (1997) New improved equation for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geotherm Res 79:9–23CrossRefGoogle Scholar
  55. Viets JG, Hofstra AH, Emsbo P (1996) Solute composition of fluid inclusions in sphalerite from North American and European Mississippi-valley type ore deposits: ore fluids derived from evaporated seawater. Society of Economic Geologists Special Publication No. 4, pp 465–482Google Scholar
  56. Walter LM, Stueber AM, Huston TJ (1990) Br–Cl–Na systematics in Illinois basin fluids: constraints on fluid origin and evolution. Geology 18:315–318CrossRefGoogle Scholar
  57. Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2 using synthetic fluid inclusions. Chem Geol 64:335–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Albert Gilg
    • 1
  • Maria Boni
    • 2
    • 3
  • Giuseppina Balassone
    • 4
  • Cameron R. Allen
    • 5
  • David Banks
    • 6
  • Farid Moore
    • 7
  1. 1.Lehrstuhl für IngenieurgeologieTechnische Universität MünchenMunichGermany
  2. 2.Dipartimento Geofisica & VulcanologiaUniversità di NapoliNaplesItaly
  3. 3.Geologisch-Paläontologisches InstitutUniversität HeidelbergHeidelbergGermany
  4. 4.Dipartimento Scienze della TerraUniversità di NapoliNaplesItaly
  5. 5.Teck Cominco AmericanSpokaneUSA
  6. 6.School of Earth SciencesUniversity of LeedsLeedsUK
  7. 7.Geological DepartmentUniversity of ShirazShirazIran

Personalised recommendations