Mineralium Deposita

, Volume 39, Issue 4, pp 452–472 | Cite as

Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany

  • Jim Webster
  • Rainer Thomas
  • Hans-Jürgen Förster
  • Reimar Seltmann
  • Christine Tappen


We remelted and analyzed crystallized silicate melt inclusions in quartz from a porphyritic albite-zinnwaldite microgranite dike to determine the composition of highly evolved, shallowly intruded, Li- and F-rich granitic magma and to investigate the role of crystal fractionation and aqueous fluid exsolution in causing the extreme extent of magma differentiation. This dike is intimately associated with tin- and tungsten-mineralized granites of Zinnwald, Erzgebirge, Germany. Prior research on Zinnwald granite geochemistry was limited by the effects of strong and pervasive greisenization and alkali-feldspar metasomatism of the rocks. These melt inclusions, however, provide important new constraints on magmatic and mineralizing processes in Zinnwald magmas.

The mildly peraluminous granitic melt inclusions are strongly depleted in CAFEMIC constituents (e.g., CaO, FeO, MgO, TiO2), highly enriched in lithophile trace elements, and highly but variably enriched in F and Cl. The melt inclusions contain up to several thousand ppm Cl and nearly 3 wt% F, on average; several inclusions contain more than 5 wt% F. The melt inclusions are geochemically similar to the corresponding whole-rock sample, except that the former contain much more F and less CaO, FeO, Zr, Nb, Sr, and Ba. The Sr and Ba abundances are very low implying the melt inclusions represent magma that was more evolved than that represented by the bulk rock. Relationships involving melt constituents reflect increasing lithophile-element and halogen abundances in residual melt with progressive magma differentiation. Modeling demonstrates that differentiation was dominated by crystal fractionation involving quartz and feldspar and significant quantities of topaz and F-rich zinnwaldite. The computed abundances of the latter phases greatly exceed their abundances in the rocks, suggesting that the residual melt was separated physically from phenocrysts during magma movement and evolution.

Interactions of aqueous fluids with silicate melt were also critical to magma evolution. To better understand the role of halogen-charged, aqueous fluids in magmatic differentiation and in subsequent mineralization and metasomatism of the Zinnwald granites, Cl-partitioning experiments were conducted with a F-enriched silicate melt and aqueous fluids at 2,000 bar (200 MPa). The results of the experimentally determined partition coefficients for Cl and F, the compositions of fluid inclusions in quartz and other phenocrysts, and associated geochemical modeling point to an important role of magmatic-hydrothermal fluids in influencing magma geochemistry and evolution. The exsolution of halogen-charged fluids from the Li- and F-enriched Zinnwald granitic magma modified the Cl, alkali, and F contents of the residual melt, and may have also sequestered Li, Sn, and W from the melt. Many of these fluids contained strongly elevated F concentrations that were equivalent to or greater than their Cl abundances. The exsolution of F-, Cl-, Li-, ± W- and Sn-bearing hydrothermal fluids from Zinnwald granite magmas was important in effecting the greisenizing and alkali-feldspathizing metasomatism of the granites and the concomitant mineralization.


Fluorine Chlorine Lithium Tin Melt inclusions Granites Tin mineralization 



Bärbel Gottesmann, Horst Kämpf, Gerhard Tischendorf, and Jürgen Wasternack are thanked for their assistance in saving drill core materials from Erzgebirge granites of invaluable scientific importance. Some samples of this study are stored at the rock archive of the Geological Survey of Brandenburg, Germany; at the London Natural History Museum; and in the mineral deposits collections of the American Museum of Natural History. We express our appreciation for the assistance of undergraduate students Meryl Eschen and Cherri Sookdeo in sample preparation, analytical work, and discussion. The manuscript benefited from thoughtful reviews by Andreas Audetat, Bernd Lehmann, and an anonymous referee. This material is based on work supported by the National Science Foundation under grant number EAR-9725072 and through a Research Experiences for Undergraduates supplement to this award.


  1. Aksyuk AM (2000) Estimation of fluorine concentrations in fluids of mineralized skarn systems. Econ Geol 95:1339–1347Google Scholar
  2. Audétat A, Günther D, Heinrich CA (2000a) Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn-W-F mineralized Mole Granite (Australia). Geochim Cosmochim Acta 64:3373–3393Google Scholar
  3. Audétat A, Günther D, Heinrich CA (2000b) Causes for large-scale metal zonation around mineralized plutons: fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ Geol 95:1563–1581Google Scholar
  4. Bacon CR (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochim Cosmochim Acta 53:1055-1066Google Scholar
  5. Bolduan H, Lächelt A, Malasek F (1967) Zur Geologie und Mineralisation der Lagerstätte Zinnwald (Cinovec). Freib Forsch-H C218:35–52Google Scholar
  6. Breiter K, Förster H-J, Seltmann R (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenic province. Miner Deposita 34:505–521CrossRefGoogle Scholar
  7. Burt DM (1981) Acidity-salinity diagrams – application to greisen and porphyry deposits. Econ Geol 76:832–843Google Scholar
  8. Cocherie A, Johan V, Rossi P, Stemprok M (1991) Trace-element variations and lanthanide tetrad effect studied in a Variscan lithium albite granite: case of the Cinovec granite (Czechoslovakia). In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals: Proceedings of the 25 years SGA anniversary meeting. Balkema, Rotterdam, pp 745–749Google Scholar
  9. Deer WA, Howie RA, Zussman J (1989) An introduction to the rock-forming minerals. Longman Scientific Technical, New York, 528 ppGoogle Scholar
  10. Dolejs D, Stemprok M (2001) Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Kruzné hory batholith, Czech Republic. Bull Czech Geol Surv 76:77–99Google Scholar
  11. Dunbar NW, Hervig RL (1992) Volatile and trace element composition of melt inclusions from the Lower Bandelier Tuff: implications for magma chamber processes and eruptive style. J Geophys Res 97:15151–15170Google Scholar
  12. Durisova J (1988) Diversity of fluids in the formation of ore assemblages in the Bohemian Massif (Czechoslovakia). Bull Mineral 111:477–492Google Scholar
  13. Durisova J, Charoy B, Weisbrod A (1979) Fluid inclusion studies in minerals from tin and tungsten deposits in the Krusne Hory Mountains (Czechoslovakia). Bull Mineral 102:665–675Google Scholar
  14. Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265CrossRefGoogle Scholar
  15. Fedkin AV, Seltmann R, Förster H-J (2001) Li-bearing micas as a fractionation indicator of tin granites: The Sadisdorf-Schellerhau granite suite, eastern Erzgebirge. In: Piestrzynski et al (eds). Mineral deposits at the beginning of the 21st century, Swets Zeitlinger, Lisse, pp 409–412Google Scholar
  16. Förster H-J (2001) Synchysite-(Y)–synchysite-(Ce) solid solutions from Markersbach, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Mineral Petrol 72:259–280CrossRefGoogle Scholar
  17. Förster H-J, Tischendorf G (1992) Volatile signatures of the Hercynian postkinematic granites of the Erzgebirge: implications to related tin-tungsten-molybdenum metallogenesis. Chem Erde 52:47–61Google Scholar
  18. Förster H-J, Seltmann R, Tischendorf G (1995) High-fluorine, low-phosphorus A-type (post-collision) silicic magmatism in the Erzgebirge. Terra Nostra 7:32–35Google Scholar
  19. Förster H-J, Tischendorf G, Seltmann R, Gottesmann B (1998) Die variszischen Granite des Erzgebirges: neue Aspekte aus stofflicher Sicht. Z geol Wiss 26:31–60Google Scholar
  20. Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645CrossRefGoogle Scholar
  21. Haapala I (1977) Petrography and geochemistry of the Eurajoki stock, a rapakivi-granite complex with greisen-type mineralization in southwestern Finland. Geol Sur Finland Bull 286, 128 ppGoogle Scholar
  22. Halter WE, Williams-Jones AE, Kontak DJ (1998) Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: implications for mineralization. Chem Geol 150:1–17CrossRefGoogle Scholar
  23. Heinrich CA (1990) The chemistry of hydrothermal tin-tungsten ore deposition. Econ Geol 90:705–729Google Scholar
  24. Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508CrossRefGoogle Scholar
  25. Johan Z, Johan V (1993) Accessory minerals of the Cinovec granitic cupola: behaviour of REE in F- and CO2-rich fluids. In: Fenoll Hach-Ali P, Torres Ruiz J, La Guioconda FG (eds) Current research in geology applied to ore deposits. Granada, pp 625–628Google Scholar
  26. Johan Z, Johan V (2001) Les micas de la coupole granitique de Cínovec (Zinnwald), République tche‘que: un nouvel apercu sur la métallogene‘se de l’étain et du tungste‘ne. Compt Rend Acad Sci, Serie II, Sci Terre Planet 332:307–313Google Scholar
  27. Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150Google Scholar
  28. Kovalenko NI, Ryzenko BN, Beljuchanova TK, Barsukov VL (1986) On the solubility of cassiterite in solutions of HF and species of Sn in fluids. Dokl Akad Nauk SSSR 290:211–214 (in Russian)Google Scholar
  29. Lehmann B (1990) Metallogeny of tin. Springer, Berlin Heidelberg New York, 211 ppGoogle Scholar
  30. Lenharo SLR, Moura MA, Botelho NF (2002) Petrogenetic and mineralization processes in Paleo- to Mesoproterozoic rapakivi granites: examples from Pitinga and Goiás, Brazil. Precamb Res 119:277–299CrossRefGoogle Scholar
  31. London D (1999) Melt boundary layers and the growth of pegmatitic textures. Can Mineral 37:826–827Google Scholar
  32. Lowenstern JB (1995) Applications of silicate melt inclusions to the study of magmatic volatiles. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Ass Can 23, pp 71–99Google Scholar
  33. Monecke T, Kempe U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns; a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196CrossRefGoogle Scholar
  34. Müller B, Seward TM (2001) Spectrophotometric determination of the stability of tin(II) chloride complexes in aqueous solution up to 300 degrees C. Geochim Cosmochim Acta 65:4187–4199CrossRefGoogle Scholar
  35. Müller A, Seltmann R, Behr H-J (2000) Application of cathodoluminescence to magmatic quartz in a tin granite – case study from the Schellerhau Granite Complex, eastern Erzgebirge, Germany. Miner Deposita 35:169–189CrossRefGoogle Scholar
  36. Müller A, Breiter K, Seltmann R, Pecskay Z (2003) Quartz and feldspar zoning in igneous rocks of the Eastern Erzgebirge pluton (Germany, Czech Republic): evidence of multiple magma mixing. Lithos (in press)Google Scholar
  37. Rieder M, Cavazzini G, D’yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval’ PV, Müller G, Neiva AMR, Radoslovich EW, Robert J-L, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Can Mineral 36:905–12Google Scholar
  38. Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12, 644 ppGoogle Scholar
  39. Rub AK, Stemprok M, Rub M (1998) Tantalum mineralization in the apical part of the Cinovec (Zinnwald) granite stock. Mineral Petrol 63:199–222Google Scholar
  40. Schröcke H (1952) Sächsische Zinnerzlagerstätten, ihre Paragenese und Altersstellung. Freib Forsch-H C 3, 19–24Google Scholar
  41. Seltmann R (1989) Depositions related with Hercynian postkinematic granitoid complexes. In: Tischendorf G (comp) Silicic magmatism and metallogenesis of the Erzgebirge. Veröff ZIPE, Akad Wissensch DDR 107, pp 111–148Google Scholar
  42. Seltmann R (1994) Sub-volcanic minor intrusions in the Altenberg Caldera and their metallogeny. In: Seltmann R, Kaempf H, Moeller P (eds) Metallogeny of collisional orogens. Czech Geol Surv, Prague, pp 198–206Google Scholar
  43. Seltmann R, Stemprok M (1995) Metallogenic overview of the Krusne Hory Mts. (Erzgebirge) region. In: Breiter K, Seltmann R (eds) Ore Mineralizations of the Krusne Hory Mts. (Erzgebirge): Excursion Guide, Third Biennial SGA Meeting, Prague, 28–31 August 1995. Czech Geological Survey, Prague, pp 1–18Google Scholar
  44. Seltmann R, Stemprok M (2001) Fabric evidence in mineralized granites. In: Bankwitz et al. (eds) Tectonics, Abstract Volume and Excursion Guide. Exkursionsführer und Veröffentlichungen der GGW, pp 88–91Google Scholar
  45. Seltmann R, Müller A (2003) From mantled feldspars to snowball quartzes: petrogenesis of the Eastern Erzgebirge granite pluton. In: Ramo T (ed) Granitic systems—state of the art and future avenues. IGCP-426 Symposium in honor of Professor Ilmari Haapala. Univ Helsinki, pp 96–99Google Scholar
  46. Seltmann R, Förster H-J, Gottesmann B, Sala M, Wolf D, Stemprok M (1998) The Zinnwald greisen deposit related to post-collisional A-type silicic magmatism in the Variscan Eastern Erzgebirge / Krusne Hory. In: Breiter K (ed) Genetic significance of phosphorus in fractionated granites. Excursion Guide International Conference IGCP Project 373 in Perslak, Czech Geological Survey Prague, pp 33–50Google Scholar
  47. Stemprok M (1961) Genetische Untersuchung der flachfallenden Gaenge auf der Erzlagerstätte Cinovec (Zinnwald) im Erzgebirge. Sbornik UUG, XXVI, Geol ser 2:455–518Google Scholar
  48. Stemprok M (1965) Petrologie und die vertikale Ausdehnung der Mineralisation in der Zinnwalder Granitkuppe. Sbornik geol ved, Rada Loziskova Geol 5:7–106Google Scholar
  49. Stemprok M, Sulcek Z (1969) Geochemical profile through an ore-bearing lithium granite. Econ Geol 64:392–404Google Scholar
  50. Stemprok M, Holub FV, Novah JK (2003) Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krusne Hory/Erzgebirge batholith and their phosphorus contents. Bull Geosci 78:277–296Google Scholar
  51. Sterner SM, Hall DL, Keppler H (1995) Compositional re-equilibration of fluid inclusions in quartz. Contrib Mineral Petrol 139:394–401Google Scholar
  52. Sushchevskaya TM, Durisova Y, Yerokhin AM, Knyazeva SN, Kokina TA, Kalinichenko AM, Lokhov KI, Prisyagina NI (1995) Chemical characteristics of mineral-forming media of cassiterite-quartz deposits from fluid inclusion data. Geokhimiya 6:809–825 (in Russian)Google Scholar
  53. Taylor RG (1979) Geology of tin deposits. Elsevier, Amsterdam, 543 ppGoogle Scholar
  54. Taylor JC, Wall VJ (1993) Cassiterite solubility, tin speciation, and transport in magmatic aqueous phase. Econ Geol 88:437–460Google Scholar
  55. Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Fluessigkeitseinschluessen in Mineralen der postmagmatischen Zinn-Wolfram-Mineralization des Erzgebirges. Freib Forsch-H C370:1- 85 + XVI ppGoogle Scholar
  56. Thomas R (1989) Physicochemical conditions as controlling factors on magmatism and metallogenesis: Plutonic and volcanic rocks. In: Tischendorf G (ed) Silicic magmatism and metallogenesis of the Erzgebirge. Veröf ZIPE, Akad Wissensch DDR 107, pp 225–233Google Scholar
  57. Thomas R, Klemm W (1997) Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: Volatile content and entrapment conditions. J Petrol 38:1753–1765Google Scholar
  58. Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2902CrossRefGoogle Scholar
  59. Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkondatierungen zur Bestimmung des Intrusionsalters des Niederbobritzscher Granites. Terra Nostra 8:183–184Google Scholar
  60. Tischendorf G (1989) (comp) Silicic magmatism and metallogenesis of the Erzgebirge. Veröff ZIPE, Akad Wissensch DDR 107:1–316Google Scholar
  61. Tischendorf G, Förster H-J (1994) Hercynian granite magmatism and related metallogenesis in the Erzgebirge: A status report. In: von Gehlen K, Klemm DD (eds) Mineral Deposits of the Erzgebirge/Krusné hory (Germany/Czech Republic). Monograph Series on Mineral Deposits 31, pp 5–23Google Scholar
  62. Tischendorf G, Just G, Gottesman B (1988) Distribution of elements at a contact albite granite/rhyolite, Zinnwald, Erzgebirge (G.D.R.). Chem Erde 48:155–162Google Scholar
  63. Tischendorf G, Gottesmann B, Förster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral Mag 61:809–834Google Scholar
  64. Tischendorf G, Förster H-J, Gottesmann B (2001) Minor- and trace-element composition of trioctahedral micas: a review. Mineral Mag 64:249–276CrossRefGoogle Scholar
  65. Tischendorf G, Rieder M, Förster H-J, Gottesmann B, Guidotti CV (2003) A revised system of common potassium micas based on cations in the octahedral sheet. Mineral Mag (in press)Google Scholar
  66. Webster JD (1990) Partitioning of F between H2O ± CO2 fluids and topaz rhyolite melt: Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contrib Mineral Petrol 104:424–438Google Scholar
  67. Webster JD, Holloway JR (1988) Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition. Geochim Cosmochim Acta 52:2091–2105Google Scholar
  68. Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Paper 246:21–34Google Scholar
  69. Webster JD, Duffield WA (1991) Volatiles and lithophile elements in Taylor Creek Rhyolite: Constraints from glass inclusion analysis. Am Mineral 76:1628–1645Google Scholar
  70. Webster JD, Duffield WA (1994) Extreme halogen abundances in tin-rich magma of the Taylor Creek Rhyolite, New Mexico. Econ Geol 89:840–850Google Scholar
  71. Webster JD, DeVivo B (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am Mineral 87:1046–1061Google Scholar
  72. Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134Google Scholar
  73. Webster JD, Burt DM, Aguillon RA (1996) Volatile and lithophile trace-element geochemistry of Mexican tin rhyolite magmas deduced from melt inclusions. Geochim Cosmochim Acta 60:3267–3283CrossRefGoogle Scholar
  74. Webster JD, Thomas R, Rhede D, Förster H-J, Seltmann R (1997) Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim Cosmochim Acta 61:2589–2604Google Scholar
  75. Yushan L, Shuqing C (1986) An experimental study on cassiterite solubility and tin transport during mineralization. Acta Geol Sin 1:78–88Google Scholar
  76. Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Jim Webster
    • 1
  • Rainer Thomas
    • 2
  • Hans-Jürgen Förster
    • 3
  • Reimar Seltmann
    • 4
  • Christine Tappen
    • 1
  1. 1.Department of Earth and Planetary SciencesAMNH10024–5192USA
  2. 2.GeoForschungsZentrum-Potsdam PotsdamGermany
  3. 3. Institute of Earth SciencesUniversity of PotsdamPotsdamGermany
  4. 4.Department of Mineralogy, CERCAMSThe Natural History MuseumLondon SW7 5BDUnited Kingdom

Personalised recommendations