Advertisement

Mineralium Deposita

, Volume 39, Issue 3, pp 301–312 | Cite as

Petrology, U/Pb dating and (C-O) stable isotope constraints on the source and evolution of the adakite-related Mezcala Fe-Au skarn district, Guerrero, Mexico

  • Gilles Levresse
  • Eduardo González-Partida
  • Alejandro Carrillo-Chavez
  • Jordi Tritlla
  • Antoni Camprubí
  • Alain Cheilletz
  • Dominique Gasquet
  • Etienne Deloule
Article

Abstract

The Mezcala gold district, Guerrero, Mexico, is a Cretaceous to early Paleocene oxidized Fe-Au skarn deposit, genetically associated with an adakitic magmatic event of 63±2 Ma, dated by ion-probe U/Pb on zircons.

The inner and outer alteration patterns and the mineralogical sequence (high garnet/pyroxene ratio, high ferric/ferrous ratio >1, predominance of Fe-poor garnet and pyroxene, low total sulfides) found in Mezcala are compatible with the description of an oxidized gold skarn type. Carbon and oxygen isotope analyses of the inner calcite zone (−9.98 to −11.64 and +13.21 to +14.59‰, respectively) unequivocally support a magmatic signature of the hydrothermal fluid. Carbon and oxygen isotopes from the outer calcite zone (−8.81 to +3.45 and +12.95 to +22.77‰, respectively) suggest a complex mechanism of degassing and subsequent cooling/dilution of the resulting magmatic brine with the meteoric water. Gold appears to be closely associated with the adakite stock, whereas its transport is related with the outflow of highly oxidized magmatic brines from the intrusion. The gold precipitation is triggered by cooling/dilution of the degassed magmatic brine by the meteoric fluids.

Keywords

Fe-Au skarn C-O stable isotope U/Pb dating Paleocene Mexico 

Notes

Acknowledgements

The Peñoles Mining Corporation is thanked for logistical field assistance and for the permission to publish the results. This study was funded in part by scientific grants UNAM-PAPIIT (# IN100900), CONACYT (# G35442-T) to E. González-Partida and CRPG-UPR2300A to A. Cheilletz and D. Gasquet. Dave Lentz and Laurence Meinert are thanked for their constructive observations and careful English changes that significantly improved the manuscript. Zircon ion-probe analysis were carried out under the supervision of E. Deloule, M. Champenois and D. Mangin.

References

  1. Bottinga Y (1968) Calculation of fractionation factors for carbon and oxygen exchange in the system calcite–carbon dioxide–water. J Phys Chem 72:800–808Google Scholar
  2. Bowers TS (1991) The deposition of gold and other metals: pressure-induced fluids immiscibility and associated stable isotope signature. Geochim Cosmochim Acta 55:2417–2434Google Scholar
  3. Brooks W (1994) Petrology and geochemistry of the McCoy gold skarn, Lander County, Nevada. PhD Thesis, Washington State University, Pullman, Washington, USA, 607 ppGoogle Scholar
  4. Brooks JW, Meinert LD, Kuyper BA, Lane ML (1991) Petrology and geochemistry of the McCoy gold skarn, Lander County, NV. In: Raines GL, Lisle RE, Schafer RW, Wilkinson WH (eds) Geology and ore deposits of the Great Basin. Geol Soc Nevada, Reno 1:419–442Google Scholar
  5. Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, p 63–118Google Scholar
  6. Clark KF, Foster CT, Damon EP (1982) Cenozoic mineral deposits and subduction-related magmatic arcs in Mexico. Geol Soc Am Bull 93:533–544Google Scholar
  7. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometry analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149Google Scholar
  8. Craig H (1961) Standards for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834Google Scholar
  9. De la Garza V, Téllez R, Díaz R, Hernández A (1996) Geology of the Bermejal iron-gold deposit Mezcala, Guerrero, México. In: Coyner AR, Fahey PL (eds) Geology and ore deposits of the American Cordillera. Geol Soc Nevada Symp Proc, Reno/Sparks, Nevada, April 1995. 111:1354–1368Google Scholar
  10. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665Google Scholar
  11. Deloule E, Alexandrov P, Cheilletz A, Laumonier B, Barbey P (2002) In situ U/Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneisses. Int J Earth Sci 91:398–405Google Scholar
  12. Fríes C (1960) Geología del Estado de Morelos y de partes adyacentes de México y Guerrero, región central meridional de México. Instituto de Geología, Boletín 60, 236 ppGoogle Scholar
  13. Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry-epithermal environment: Econ Geol 92:45–59Google Scholar
  14. González-Partida E, Levresse G, Cheilletz A, Gasquet D, Jones D (2003) Paleocene adakite bearing Fe-Au intrusive rocks, Mezcala, Mexico: evidence from geochemical characteristics. J Geochem Explor 4105:1–16Google Scholar
  15. González-Partida E, Torres-Rodríguez V (1988) Evolución tectónica de la porción centro-occidental de México y su relación con los yacimientos minerales asociados. Geofis Int 27:543–581Google Scholar
  16. Hedenquist JW (1987) Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In: Horn MK (ed) Circum-Pacific Energy and Mineral Resources Conference, 4 th, Singapore 1986, Trans. Tulsa, Oklahoma. Am Assoc Petrol Geology, pp 513–524Google Scholar
  17. Henley RW, McNabb A (1978) Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement: Econ Geol 73:1–20Google Scholar
  18. Huber BT, Leckie RM, Norris RD, Bralower TJ, CoBabe E (1999) Foraminiferal assemblage and stable isotopic change across the Cenomanian Turonian boundary in the subtropical Atlantic. J Foramin Res 29:392–417Google Scholar
  19. Jones D, González-Partida E (2001) Evidence of magmatic fluid flux and “recapture” in mineralizing granodiorites of the Nukay Au (-Cu) skarn district, Gro. Mexico. Mexico XXIII convention Nacional AIMMGM, AC, MexicoGoogle Scholar
  20. Jones D, Jackson PR (2001) Geology and mineralization of Los Filos gold deposit, Nukay district, Guerrerro, Mexico. Mexico XXIII convention Nacional AIMMGM, AC, MexicoGoogle Scholar
  21. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475Google Scholar
  22. Levresse G, González-Partida E (2003) High oxidised gold skarn fluids analysis in the Mezcala deposit, Gro., Mexico. J Geochem Explor 78–79:649–652Google Scholar
  23. Ludwig KR (2000) Isoplot/Ex 2.49. A geochronological toolkit for Microsoft Excel. Berkeley Geochronolgical Center Spec Publ N°1a, 58 ppGoogle Scholar
  24. Maury RC, Sajona FG, Pubellier M, Bellon H, Defant MJ (1996) Fusion de la croute oceanique dans les zones de subduction/collision recentes: L’exemple de Mindanao (Philipinas): Bull Soc Geol Fr 167:579–590Google Scholar
  25. McCrea JM (1950) On the isotopic of carbonates and paleotemperature scale. J Chem Phys 18:849–857Google Scholar
  26. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19:145–162Google Scholar
  27. Meinert LD (1995) Compositional variation of igneous rock associated with skarns deposits-chemical evidence for a genetic connection between petrogenesis and mineralization. In: Thompson JFH (ed) Magma, fluids and ore deposits. Mineral Assoc Can, Short Course 23:401–418Google Scholar
  28. Meinert LD, Hedenquist JW, Satoh H, Matsuhisa Y (2003) Formation of anhydrous and hydrous skarn in Cu-Au-ore deposits by magmatic fluids. Econ Geol 98:147–156Google Scholar
  29. Meinert LD, Hefton KK, Mayes D, Tasiran I (1997) Geology, zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ Geol 92:509–534Google Scholar
  30. Morán-Zenteno DJ, Tolson G, Martínez-Serrano R, Martiny B, Schaaf P, Silva-Romo G, Macías-Romo C, Alba-Aldave L, Hernández-Bernal MS, Solis-Pichardo GN (1999) Tertiary arc-magmatism of the Sierra Madre del Sur, México, and its transition to the volcanic activity of the Trans-Mexican Volcanic Belt. J South Am Earth Sci 12:513–535CrossRefGoogle Scholar
  31. Muntean JL, Einaudi MT (2000) Porphyry gold deposits of the Refugio District, Maricunga Belt, northern Chile. Econ Geol 95:1445–1472Google Scholar
  32. Norris RD, Kroon D, Huber BT, Erbacher J (2001) Cretaceous Palaeogene ocean and climate change in the subtropical North Atlantic. In: Kroon D, Norris RD, Klaus A (eds) Western North Atlantic Palaeogene and Cretaceous palaeoceanography. Geol Soc Lond Spec Publ 183:1–22Google Scholar
  33. Schaaf P, Morán-Zenteno D, Hernández-Bernal M (1995) Paleogene continental margin truncation in southwestern Mexico: geochronological evidence. Tectonics 14:1339–1350CrossRefGoogle Scholar
  34. Sillitoe RH (1988) Gold deposits in western Pacific island arcs: the magmatic connection. Econ Geol Monogr 6:274–291Google Scholar
  35. Tritlla J, Camprubí A, Centeno E, Corona-Esquivel R, Iriondo A, Sánchez-Martínez S, Gasca-Durán AA, Cienfuegos-Alvarado E, Morales-Puente P (2003) Estructura y edad del depósito de Fe de Peña Colorado (Colima): un posible equivalente Fanerozoico de los depósitos de tipo IOCG. RevistaGoogle Scholar
  36. Zheng YF, Hoefs J (1993) Carbon and oxygen isotope covariations in hydrothermal calcites: theoretical modeling on mixing processes and application to kushikino gold mining area in Japan. Mineral Deposita 25:246–250Google Scholar
  37. Zürcher L, Ruiz J, Barton MD (2001) Paragenesis, elemental distribution, and stable isotopes at the Peña Colorda iron skarn, Colima, Mexico. Econ Geol 96:535–557Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Gilles Levresse
    • 1
  • Eduardo González-Partida
    • 1
  • Alejandro Carrillo-Chavez
    • 1
  • Jordi Tritlla
    • 1
  • Antoni Camprubí
    • 1
  • Alain Cheilletz
    • 2
  • Dominique Gasquet
    • 2
  • Etienne Deloule
    • 2
  1. 1.Programa de GeofluidosCentro de Geociencias UNAM-Campus JuriquillaQuerétaro México
  2. 2.Centre de Recherches Pétrographiques et GéochimiquesCRPG-CNRS and Ecole Nationale Supérieure de GéologieVandoeuvre-les-NancyFrance

Personalised recommendations