Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

ELA-ICP-MS U–Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for porphyry-related mineralization


ELA-ICP-MS U–Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallón Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multi-vent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46±0.14 to 7.94±0.27 Ma. Regionally extensive silicic explosive volcanism occurred at ~8.0 Ma (8.05±0.13 and 7.96±0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02±0.14 and 7.98±0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95±0.17 Ma) and rhyolitic diatremes (7.79±0.13 Ma) deposited thick tuff blankets across the region. Emplacement of large intermediate composition stocks occurred at 7.37±0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10±0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10± 0.06 to 6.93±0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92±0.07 Ma).

The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu–Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. Alpers CN, Brimhall GH (1988) Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida. Geol So Am Bull 100:1640–1656

  2. Arribas A Jr, Hedenquist JW, Itaya T, Okada T, Concepción RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 ka in northern Luzon, Philippines. Geology 23:337–340

  3. Ballard JR (2001) A comparative study between the geochemistry of ore-bearing and barren calc-alkaline intrusions: PhD Thesis, Australian National University

  4. Ballard JR, Palin JM, Williams IS, Campbell IH (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386

  5. Barth S, Oberli F, Meier M (1989) U–Th–Pb systematics of morphologically characterized zircon and allanite: a high-resolution isotopic study of the Alpine Rensen pluton (northern Italy). Earth Planet Sci Lett 95:235–254

  6. Beane RE, Titley SR (1981) Porphyry copper deposits. Part II, Hydrothermal alteration and mineralization. In: Skinner BJ (ed) Econ Geol 75th anniversary volume; 1905–1980. Society of Economic Geologists Publication, pp 235–269

  7. Black LP, Kamo SL, Williams IS, Foudoulis C, Claoué-Long JC, Korsch RJ, Davis DW (2000) The quest for a high-quality zircon standard for microbeam Pb–U–Th geochronology. Geol Soc Aust Abstr 59:43

  8. Burnham CW (1967) Hydrothermal fluids at the magmatic stages. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston, New York, pp 34–76

  9. Caelles JC (1979) The geological evolution of the Sierras Pampeanas Massif, La Rioja and Catamarca Provinces, Argentina. PhD Thesis, Queen's University

  10. Caelles JC, Clark AH, Farrar E, McBride SL, Quirt S (1971) Potassium–argon ages of porphyry copper deposits and associated rocks in the Farallón Negro-Capillitas district, Catamarca, Argentina. Econ Geol 66:961–964

  11. Camus F (2002) The Andean porphyry systems. In: Cooke DR, Pongratz J (eds) Giant ore deposits: characteristics, genesis and exploration. CODES Special Publication 4, Hobart, pp 5–22

  12. Cathles LM (1981) Fluid flow and genesis of hydrothermal ore deposits. In: Skinner BJ (ed) Economic Geology 75th anniversary volume; 1905–1980. Society of Economic Geologists Publication, pp 424–457

  13. Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

  14. Clark AH, Farrar E, Caelles JC, Haynes SJ, Lortie RB, McBride SL, Quirt GS, Robertson RCR, and Zentilli M (1976) Longitudinal variations in the metallogenetic evolution of the Central Andes; a progress report. In: Strong DF (ed) Special paper 14. Metallogeny and Plate Tectonics, Geological Association of Canada Special, pp 23–58

  15. Clark AH, Tosdal RM, Farrar E, Plazolles VA (1990) Geomorphologic environment and age of supergene enrichment of the Cuajone, Quellaveco, and Toquepala porphyry copper deposits, southeastern Peru. Econ Geol 85:1604–1628

  16. Cliff RA (1985) Isotopic dating of metamorphic belts. J Geol Soc Lond 142:97–110

  17. Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using sensitive high mass-resolution ion microprobe. J Geophys Res 89(suppl):B525–B524

  18. Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile porphyry Copper deposit revisited: geologic and geochronologic framework. Int Geol Rev 39:22–54

  19. Coughlin TJ, Holcombe RJ (2002) Linked faults and porphyry-skarn mineralization in the Central Andes. In: Vearncombe S (ed) Applied structural geology for mineral exploration and mining. Aust Inst Geosci Bull 36:36–38

  20. Coughlin TJ, O'Sullivan PB, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina; implications for the mechanism of plateau uplift in the Andes. Geology 26:999–1002

  21. Cuadra P (1986) Geocronologia K–Ar del yacimiento El Teniente y areas adyacentes. Rev Geol Chile 27:3–26

  22. Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing earth. Earth Planet Sci Lett 28:155–171

  23. Damm KW, Harmon RS, Kelley S (1994) Some isotopic and geochemical constraints on the origin and evolution of the Central Andean basement (19°−24°S). In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the southern Central Andes; structure and evolution of an active continental margin. Springer, Berlin Heidelberg New York, pp 263–276

  24. Dawson SE (1994) The occurrence of gold at the Bajo de la Alumbrera porphyry copper–gold deposit, northwestern Argentina. MSc Thesis, University of Arizona

  25. de Urreiztieta M, Gapais D, Le CC, Cobbold PR, Rossello E (1996) Cenozoic dextral transpression and basin development at the southern edge of the Puna Plateau, northwestern Argentina. Tectonophysics 254:17–39

  26. Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposits, Nevada: a 6-km vertical reconstruction. Econ Geol 87:1963–2001

  27. Dürr S, Seide E, Kreuzer H, Harre W (1978) Témoins d'un mètamorphisme d'àge crètacè supèrieur dans I'Egèide: dations radiomètriques de minèraux provenant de l'île de Nikourià (Cyclades, Grèce). Bull Geol Soc France 20:209–213

  28. Elder JW (1977) Model of hydrothermal ore genesis: Volcanic Studies Group of the Geological Society of London, 21–22 January 1976, Proceedings, pp 4–13

  29. Gebauer D, Grünenfelder M (1979) U–Th–Pb dating of minerals. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 101–131

  30. Guilbert JM (1995) Geology, alteration, mineralization, and genesis of the Bajo de la Alumbrera porphyry copper–gold deposit, Catamarca province, Argentina. Arizona Geol Soc Dig 20:646–656

  31. Gustafson LB (1978) Some major factors of porphyry copper genesis. Econ Geol 73:600–607

  32. Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

  33. Godeas MC, Segal de Svetliza SJ (1980) Alteración hidrotermal y mineralización en el Bajo la Alumbrera, Provincia de Catamarca. Rev Asoc Geol Argentina 35:318–331

  34. González OE (1975) Geología y alteración en el cobre porfidico "Bajo la Alumbrera": Rep. Argentina: II. Congreso Ibero-Americano de Geología Económica, pp 247–270

  35. González Bonorino F (1950) Geologia y petrografia de las hojas 12d (Capillitas) y 13d (Andalgalá): Buenos Aires Direccion Nacional de Geologia y Mineria, Boletin

  36. Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in Late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822

  37. Harris AC (2002) The genesis of a porphyry Cu–Au deposit, Farallón Negro Volcanic Complex, NW Argentina. PhD Thesis, University of Queensland

  38. Hedenquist JW, Richards JP (1998) The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. In: Richards JP, Larson PB (eds) Techniques in hydrothermal ore deposits geology. Rev Econ Geol 10:235–256

  39. Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centred hydrothermal system: far Southeast Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Econ Geol 93:374–404

  40. Henry CD, Elson HB, Castor SB (1995) Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Geol Soc Am Abstr Programs 27:A329

  41. Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500

  42. Horn I, Rudnick RL, McDonough WE (2000) Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation ICP-MS: Application to U–Pb geochronology. Chem Geol 164:281–301

  43. Hwang IG, Chough SK, Hong SW, Choe NV (1995) Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sediment Geol 98:147–179

  44. Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764

  45. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca Plate. Geol So Am Bull 94:341–361

  46. Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes. In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec Publ 7:27–59

  47. Keay S (1998) The geological evolution of the Cyclades, Greece: constraints from SHRIMP U–Pb geochronology. PhD Thesis, Australian National University

  48. Landtwing MR, Dillenbeck ED, Leake MH, Heinrich CA (2002) Evolution of the breccia-hosted porphyry Cu–Mo–Au deposit at Agua Rica, Argentina: progressive unroofing of a magmatic-hydrothermal system. Econ Geol 97:1273–1292

  49. Lanphere MA, Baadsgaard H (2001) Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chem Geol 175:653–671

  50. Llambías EJ (1972) Estructura del grupo volcanico Farallón Negro, Catamarca, República Argentina. Rev Asoc Geol Argentina 27:161–169

  51. Lowell JD, Guilbert JM (1970) Lateral and vertical alteration-mineralization zoning in porphyry copper ore deposits. Econ Geol 65:373–408

  52. Lucassen F, Becchio R, Wilke HG, Franz G, Thirlwall MF, Viramonte J, Wemmer K, (2000) Proterozoic–Paleozoic development of the basement of the Central Andes (18–26°S): a mobile belt of the South American craton. J S Am Earth Sci 13:697–715

  53. Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos district, Chile. Econ Geol 92:784–806

  54. Martin MV, Dilles JH, Proffett JM (1999) U–Pb geochronologic constraints for the Butte porphyry system. Geol Soc Am Abstr Programs 31:380

  55. Mathur R, Ruiz J, Munizaga F (2000) Relationship between copper tonnage of Chilean base metal porphyry deposits and Os isotope ratios. Geology 28:555–558

  56. Mattinson JM (1973) Anomalous isotopic composition of lead in young zircons. Carnegie Institute Washington Yearbook vol 72, pp 613–616

  57. McBride SL, Caelles JC, Clark AH, Farrar E (1976) Paleozoic radiometric age provinces in the Andean basement, Latitudes 25°–30°S. Earth Planet Sci Lett 29:373–383

  58. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2 edn. Oxford University Press, New York

  59. McInnes BIA, Farley KA, Sillitoe RH, Kohn BP (1999) Application of apatite (U–Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile. Econ Geol 94:937–948

  60. Méndez V (1997) Yacimiento Bajo la Alumbrera, Provincia de Catamarca, República Argentina. Rev Asoc Argentina Geól Econ 11:15–30

  61. Mirre JC, Aceñolaza FG (1972) El hallazgo de Oldhamia sp. (traza fosil) y su valor como evidencia de edad Cambrica para el supuesto Precambrico del borde occidental del Aconquija, Prov de Catamarca. Ameghiniana 9:72–78

  62. Norton D, Cathles LM (1979) Thermal aspects of ore deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 611–631

  63. Norton D, Knight J (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am J Sci 277:937–981

  64. Pankhurst RJ, Hole MJ, Brook M (1988) Isotope evidence for the origin of Andean granites. Trans R Soc Edinb Earth Sci 79:123–133

  65. Parry WT, Wilson PN, Jasumback MD, Heizler MT (1997) Clay mineralogy and 40Ar/39Ar dating of phyllic and argillic alteration at Bingham, Utah. Geol Soc Am Abstr Programs 29:282

  66. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144

  67. Pe-Piper G, Kotopouli CN, Piper DJW (1997) Granitoid rocks of Naxos, Greece: regional geology and petrology. Geol J 32:153–171

  68. Peréllo J, Rojas N, Devaux C, Fava L, Etchart E Harman P (1998) Discovery of the Agua Rica porphyry Cu–Mo–Au deposit, Catamarca province, northwestern Argentina, Part II: geology. Australian Mineral Foundation Symposium, Perth, Western Australia, Proceedings, pp 117–132

  69. Proffett JM (1995) Geology of the Bajo de la Alumbrera porphyry Cu–Au deposits, Catamarca Province, Argentina. Minera Alumbrera Ltd, Internal Report

  70. Proffett JM (1997) Geology of the Bajo de la Alumbrera porphyry Cu–Au deposits, Catamarca Province, Argentina. Minera Alumbrera, Internal Report

  71. Ramos VA, Reynolds JH, Jordan TE, Tabbutt KD (1988) Time constraints for the uplift of the Sierras de Toro Negro, Umango, and Espinal, western Sierras Pampeanas, Argentina. Geol Soc Am Abstr Programs 20:61

  72. Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, (1998) Early evolution of the Proto-Andean margin of South America. Geology 26:707–710

  73. Reynolds JH, Tabbutt KT, Johnson NM, Jordan TE (1987) Non-systematic uplift of the northwestern Sierras Pampeanas, Catamarca Province, Argentina; interpretation of magnetic polarity stratigraphy data. Geol Soc Am Abstr Programs 19:817

  74. Reynolds P, Ravenhurst C, Zentilli M, Lindsay D (1998) High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem Geol 148:45–60

  75. Richards JP, McDougall I (1990) Geochronology of the Porgera gold deposit, Papua New Guinea: resolving the effects of excess argon on K–Ar and 40Ar/39Ar age estimates for magmatism and mineralization. Geochim Cosmochim Acta 54:1397–1415

  76. Richards JP, Noble SR, Pringle MS (1999) A revised Late Eocene age for porphyry Cu magmatism in the Escondida Area, Northern Chile. Econ Geol 94:1231–1248

  77. Roberts HJ, Kelley SP, Dahl PS (2001) Obtaining geologically meaningful 40Ar–39Ar ages from altered biotite. Chem Geol 172:277–290

  78. Rojas N, Peréllo J, Harman P, Cabello J, Devaux C, Fava L, Etchart E (1998) Discovery of the Agua Rica porphyry Cu–Mo–Au deposit, Catamarca province, northwestern Argentina, Part I: exploration and discovery. Australian Mineral Foundation Symposium, Perth, Western Australia, Proceedings, pp 111–117

  79. Rossello EA (1980) Nuevo complejo volcanico Vicuna Pampa, Departamento Belen, Provincia de Catamarca. Rev Asoc Geol Argentina 35:436–438

  80. Sasso AM (1997) Geological evolution and metallogenetic relationships of the Farallón Negro volcanic complex, NW Argentina. PhD Thesis, Queens University

  81. Sasso AM, Clark AH (1998) The Farallón Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu–Au metallogeny in the Andean back-arc. Soc Econ Geol Newslett 34(1):8–18

  82. Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

  83. Schmitz MD, Bowring SA (2001) U–Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U–Pb geochronology and its application to young volcanic rocks. Geochim Cosmochim Acta 65:2571–2587

  84. Silberman ML, Bonham HF Jr, Garside LJ, Ashley RP (1979) Timing of hydrothermal alteration-mineralization and igneous activity in the Tonopah mining district and vicinity, Nye and Esmeralda Counties, Nevada. Nevada Bur Mines Geol Report 33:119–126

  85. Sillitoe RH (1972) A plate tectonic model for the origin of porphyry copper deposits. Econ Geol 67:184–197

  86. Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68:799–815

  87. Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388

  88. Sillitoe RH (2000) Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery. In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev Econ Geol 13:315–345

  89. Sister RG (1963) Informe geológico-económico de Farallón Negro y zona adyacente, Distrito Haulfin, Departamento Belen, Provincia de Catamarca, Opera Lilloana, VIII

  90. Skewes MA, Stern CR (1994) Tectonic trigger for the formation of Late Miocene Cu-rich megabreccias in the Andes of central Chile. Geology 22:551–554

  91. Skewes MA, Stern CR (1995) Genesis of the giant Late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. Int Geol Rev 37:893–909

  92. Smalley R (1996) Andean crustal and upper mantle structure in the thick-skinned Sierras Pampeanas of San Juan, Argentina. Geol Soc Am Abstr Programs 28:112

  93. Smith RL, Shaw HR (1979) Igneous-related geothermal systems. US Geol Surv Circ 790:12–17

  94. Snee L, Miggins D, Geissman JW, Reed MH, Dilles JH, Zhang L (1999) Thermal history of the Butte porphyry system, Montana. Geol Soc Am Abstr Programs 31:380

  95. Stambuk V, Blondel J, Serrano L (1982) Geologia del yacimiento Rio Blanco. Congr Geol Chileno Actas 2:E419–E442

  96. Stults A (1985) Geology of the Bajo de la Alumbrera porphyry copper and gold prospect, Catamarca Province, Argentina. MSc Thesis, University of Arizona

  97. Strecker MR, Cerveny P, Bloom AL, Malizia D (1989) Late Cenozoic tectonism and landscape development in the foreland of the Andes; northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics 8:517–534

  98. Strecker MR, Bloom AL, Malizia D (1990) Neotectonic activity in the northern Sierras Pampeanas, Argentina: Colloques et Seminaires. Institut de Recherche Scientifique pour le Developpement en Cooperation, Paris, pp 99–102

  99. Tabbutt KD (1990) Temporal constraints on the tectonic evolution of Sierra de Famatina, northwestern Argentina, using the fission-track method to date tuffs interbedded in synorogenic clastic sedimentary strata. J Geol 98:557–566

  100. Tabbutt K, Naeser CW, Jordan TE, Cerveny PF (1987) Edades nuevas por metodo de trazas de fision de todas Mio-Pliocene en las sierras Pampeanas y la Precordillera de Argentina. Actas Congr Geol Argentino 4:222–224

  101. Tilton GR, Pollak RJ, Clark AH, Robertson RCH (1981) Isotopic composition of Pb in central Andean ore deposits. Geol Soc Am Mem 154:791–816

  102. Titley SR (1982) The style and progress of mineralization and alteration in porphyry copper systems. In: Titley SR (ed) Advances in geology of the porphyry copper deposit, southwestern North America. University of Arizona Press, Tucson, pp 93–116

  103. Titley SR, Beane RE (1981) Porphyry copper deposits; part I, geologic settings, petrology, and tectogenesis. In: Skinner BJ (ed) Economic Geology 75th Anniversary Volume; 1905–1980. Society of Economic Geologists Publication, pp 214–235

  104. Ulrich T, Heinrich CA (2001) Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina. Econ Geol 96:1719–1742

  105. Ulrich T, Günthur D, Heinrich CA (2001) The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774

  106. Walker JA, Moulds TN, Zentilli M, Feigenson MD (1991) Spatial and temporal variations in volcanics of the Andean Central Volcanic Zone (26 to 28°S). Geol Soc Am Spec Pap 265:139–155

  107. Warnaars FW, Holmgren C, Barassi S (1985) Porphyry copper and tourmaline breccias at Los Bronces-Rio Blanco, Chile. Econ Geol 80:1544–1565

  108. Watanabe Y, Stein HJ, Morgan JW, Markey RJ (1999) Re–Os geochronology brackets timing and duration of mineralization for the El Salvador porphyry Cu–Mo deposit, Chile. Geol Soc Am Abstr Programs 31:30

  109. Watson EB, Cherniak DJ, Hanchar JM, Harrison TM, Wark DA (1997) The incorporation of Pb into zircon. Chem Geol 141:19–31

  110. Wijbrans JR, McDougall I (1988) Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. J Metamorph Geol 6:571–594

  111. Wilson CJN (1993) Stratigraphy, chronology, styles and dynamics of late Quaternary eruptions from Taupo Volcano, New Zealand. Phil Trans R Soc Lond, Phys Sci Eng 343:205–306

  112. Zentilli M, Krogh TE, Maksaev V, Alpers CN (1994) Uranium-lead dating of zircons from the Chuquicamata and La Escondida porphyry copper deposits, Chile: inherited zircon core of Paleozoic age with Tertiary overgrowths. Comunicaciones 45:101–110

Download references


This project forms part of the first author's doctoral research at the University of Queensland, which was funded by an Australian Postgraduate Award scholarship. MIM Exploration and Minera Alumbrera are thanked for financial and logistical support and access to the Farallón Negro district. Mario Alderete from Yacimientos Mineros Agua de Dionisio (YMAD) is also thanked for granting initial access. The first author would like to thank the RSES for access to the ELA-ICP-MS and mineral separation facilities. SEM images were obtained with the help of Graeme Auchterlonie from the Centre for Microscopy and Microanalysis, the University of Queensland. Thanks are also due to Rick Valenta, Steve Brown, John Proffett, Jim Dunlap, Ron Berry, Sue Keay, and David Keough and the many others who have been involved with the project. We thank Noel White for his insightful and thorough reviews of the manuscript resulting in substantial improvements. Richard Tosdal, Richard Goldfarb, Jeremy Richards and one other anonymous reviewer are acknowledged for their constructive comments that helped refine the manuscript.

Author information

Correspondence to Anthony C. Harris.

Additional information

Editorial handling: N. White

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harris, A.C., Allen, C.M., Bryan, S.E. et al. ELA-ICP-MS U–Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for porphyry-related mineralization. Miner Deposita 39, 46–67 (2004). https://doi.org/10.1007/s00126-003-0381-0

Download citation


  • Copper
  • Gold
  • Lava domes
  • Porphyry
  • U–Pb geochronology