Mineralium Deposita

, Volume 38, Issue 5, pp 640–646 | Cite as

The Cretaceous iron belt of northern Chile: role of oceanic plates, a superplume event, and a major shear zone

  • Roberto OyarzunEmail author
  • Jorge Oyarzún
  • Jean Jacques Ménard
  • Javier Lillo


The Cretaceous constitutes a turning point in the tectonic, magmatic, and metallogenic history of Chile. The geological evidence indicates that a major change occurred in late Neocomian time when superplume emplacement (Mid-Pacific Superplume) and plate reorganization processes took place in the Pacific. The superplume event resulted in a major ridge-push force resulting in increased coupling between the subducting and overriding plates. This completely changed the tectonic setting of Chile ending the Early Cretaceous extensional period (aborted rifting in the back-arc basin), and increasing stress at a crustal scale. As a consequence, overpressurized dioritic magmas were pushed up mainly along the best possible structural path in northern Chile, i.e., the Atacama Fault Zone, eventually forming a +500-km-long belt of Kiruna-type iron deposits with reserves of ~2,000 Mt (60% Fe), a unique case in Chile's geological history.


Iron belt Cretaceous Chile Shear zone Superplume 



We would like to thank Bernd Lehmann and Robert W. King for their constructive reviews of the manuscript.


  1. Aguirre L, Levi B, Nyström JO (1989) The link between metamorphism, volcanism and geotectonic setting during the evolution of the Andes. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic belts. Geol Soc Spec Publ 43, London, pp 223–232Google Scholar
  2. Bookstrom AA (1977) The magnetite deposits of El Romeral. Econ Geol 72:1101–1130CrossRefGoogle Scholar
  3. Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Muñoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern central Andes, Chile (33°-36°S.L.). J S Am Earth Sci 15:117–139CrossRefGoogle Scholar
  4. Coffin MF, Eldholm O (1993) Scratching the surface: estimating dimensions of large igneous provinces. Geology 21:515–518CrossRefGoogle Scholar
  5. Davidson J, Mpodozis C (1991) Regional geologic setting of epithermal gold deposits, Chile. Econ Geol 86:1174–1186CrossRefGoogle Scholar
  6. Förster H, Jafarzadeh A (1994) The Bafq mining district in central Iran – a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721CrossRefGoogle Scholar
  7. Hildebrand RS (1986) Kiruna-type deposits: their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, northwest Canada. Econ Geol 81:640–659CrossRefGoogle Scholar
  8. Kelley DS, Früh-Green GL (2001) Volatile lines of descent in submarine plutonic environments: insights from stable isotope and fluid inclusion analyses. Geochim Cosmochim Acta 65:3325–3346CrossRefGoogle Scholar
  9. Larson RL (1991a) Latest pulse on Earth: evidence for a mid-Cretaceous superplume. Geology 19:547–550CrossRefGoogle Scholar
  10. >Larson RL (1991b) Geological consequences of superplumes. Geology 19:963–966CrossRefGoogle Scholar
  11. Levi B, Aguirre L (1981) Ensialic spreading-subsidence in the Mesozoic and Paleogene Andes of central Chile. J Geol Soc 138:75–81CrossRefGoogle Scholar
  12. Levi B, Nyström JO, Thiele R, Åberg G (1987) Geochemical polarities in Mesozoic-Tertiary volcanic rocks from the Andes in central Chile and tectonic interpretation. J S Am Earth Sci 1:63–74CrossRefGoogle Scholar
  13. Lin S, Jiang D (2001) Using along-strike variation in strain and kinematics to define the movement direction of curved transpressional shear zones: an example from northwestern Superior province, Manitoba. Geology 29:767–770CrossRefGoogle Scholar
  14. Maksaev V, Zentilli M (1988) Metallogenic framework of the large porphyry copper deposits of the Andes of northern Chile. Proc 5th Chilean Geol Congr, Santiago, Chile, vol 1, pp 181–212Google Scholar
  15. Ménard JJ (1988) Les relations volcanism, plutonism et minéralisation dans la Ceinture de Fer du Chile: la région d'El Algarrobo. Thèse d'état Université Paris XI, 370 ppGoogle Scholar
  16. Ménard JJ (1992) Comparaison entre les roches plutoniques associées à la Ceinture de Fer du Chili et aux porphyres cuprifères: arguments pétrologiques. C R Acad Sci Paris 315: 725–731Google Scholar
  17. Ménard JJ (1995) Relationships between altered pyroxene diorite and the magnetite mineralization in the Chilean Iron Belt, with emphasis on the El Algarrobo iron ore deposits (Atacama region, Chile). Miner Deposita 30:268–274CrossRefGoogle Scholar
  18. Marschick R, Fontboté L (1996) Copper–(iron) mineralization and superposition of alteration events in the Punta del Cobre belt, northern Chile. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol Spec Publ 5, pp 171–190Google Scholar
  19. Montecinos P (1985) Pétrologie des roches intrusives associées au gisement de fer El Algarrobo (Chile). Thèse de Dr-Ing, Université de Paris-Sud, 191 ppGoogle Scholar
  20. Munizaga F, Huete C, Hervé F (1985) Geocronología K-Ar y razones iniciales Sr87/Sr86 de la "Faja Pacífica" de "Desarrollos Hidrotermales". Proc 4th Chilean Geol Congr, Antofagasta, Chile, vol 4, pp 357–379Google Scholar
  21. Munizaga F, Holmgren C, Huete C, Kawashita K (1988) Geocronología de los yacimientos de cobre El Soldado y Lo Aguirre, Chile central. Proc 5th Chilean Geol Congr, Santiago, Chile, vol 3, pp 177–193Google Scholar
  22. Oyarzún J (2000) Andean metallogenesis: a synoptical review and interpretation. In: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. 31st International Congress, Rio de Janeiro, pp 725–753Google Scholar
  23. Oyarzún J, Frutos J (1984) Tectonic and petrological frame of the Cretaceous iron deposits of northern Chile. Mining Geol 34:21–31Google Scholar
  24. Oyarzún J, Frutos J (1986) Los depósitos ferríferos del Norte de Chile. In: Frutos J, Oyarzun R, Pincheira M (eds) Geología y recursos minerales de Chile. University of Concepción Press, pp 691–713Google Scholar
  25. Oyarzun R, Ortega L, Sierra J, Lunar R, Oyarzún J (1998) Cu, Mn, and Ag mineralization in the Quebrada Marquesa Quadrangle, Chile: the Talcuna and Arqueros districts. Miner Deposita 33:547–559CrossRefGoogle Scholar
  26. Oyarzun R, Márquez A, Lillo J, López I, Rivera S (2001) Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Miner Deposita 36:794–798CrossRefGoogle Scholar
  27. Pichon R (1981) Contribution à l'étude de la ceinture de fer du Chili. Les gisements de Bandurrias (Province d'Atacama) et Los Colorados Norte (Province de Huasco). Thèse 3ème cycle. Univ Paris XI, 326 ppGoogle Scholar
  28. Pincheira M (1986) Reseña de las características geológicas de los principales yacimientos de hierro del Norte de Chile. In: Frutos J, Oyarzun R, Pincheira M (eds) Geología y recursos minerales de Chile. University of Concepción Press, pp 715–737Google Scholar
  29. Richards MA, Lithgow-Bertollini C (1996) Plate motion changes, the Hawaiian-Emperor bend, and the apparent success and failure of geodynamic models. Earth Planet Sci Lett 137:19–27CrossRefGoogle Scholar
  30. Ruiz C, Aguirre L, Corvalán J, Klohn C, Klohn E, Levi B (1965) Geología y yacimientos metalíferos de Chile. Instituto de Investigaciones Geológicas, Santiago (Chile), 305 ppGoogle Scholar
  31. Ryan PJ, Lawrence AL, Jenkins RA, Matthews JP, Zamora JC, Marino E, Urqueta I (1995) The Candelaria copper–gold deposit. In: Pierce FW, Bolm JG, (eds) Porphyry copper deposits of the American cordillera. Arizona Geol Soc Digest 20:625–645Google Scholar
  32. Saint Blanquant M, Tikoff B, Teyssier C, Vigneresse JL (1998) Transpressional kinematics and magmatic arcs. In: Holdsworth RE, Strachan RA, Dewey JF (eds) Continental transpressional and transtensional tectonics. Geol Soc Spec Publ 135, London, pp 327–340Google Scholar
  33. Scheuber E, Andriessen PAM (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J Struct Geol 12:243–257CrossRefGoogle Scholar
  34. Scheuber E, Reutter KJ (1992) Magmatic arc tectonic in the central Andes between 21º and 25ºS. Tectonophysics 205:127–140CrossRefGoogle Scholar
  35. Scheuber E, Hammerschmidt K, Friedrichsen H (1995) 40Ar/39Ar and Rb–Sr analyses from ductile shear zones from the Atacama fault zone, northern Chile: the age of deformation. Tectonophysics 250:61–87CrossRefGoogle Scholar
  36. Sibson RH (1990) Faulting and fluid flow. In: Nesbitt BE (ed) Short course on fluids in tectonically active regimes of the continental crust. Mineralogical Association of Canada, Vancouver, pp 93–132Google Scholar
  37. Sillitoe RH (1988) Epochs of intrusion-related copper mineralization in the Andes. J S Am Earth Sci 1:89–108CrossRefGoogle Scholar
  38. Sillitoe RH, Marquardt JC, Ramírez F, Becerra H, Gómez M (1996) Geology of the concealed MM porphyry copper deposit, Chuquicamata district, northern Chile. In: Camus F, Sillitoe RH, Peteresen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol Spec Publ 5, pp 59–70Google Scholar
  39. Taylor GK, Grocott J, Pope A, Randall DE (1998) Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike-slip duplex in the Coastal Cordillera of northern Chile. Tectonophysics 299:93–109CrossRefGoogle Scholar
  40. Turner S, Regelous M, Kelley S, Hawkesworth C, Mantovani M (1994) Magmatism and continental break-up in the South Atlantic: high precision 40Ar-39Ar geochronology. Earth Planet Sci Lett 121:333–348CrossRefGoogle Scholar
  41. Vaughan, APM (1995) Circum-Pacific mid-Cretaceous deformation and uplift: a superplume-related event ? Geology 23:491–494Google Scholar
  42. Vila T, Lindsay N, Zamora R (1996) Geology of the Manto Verde copper deposit, northern Chile: a specularite-rich, hydrothermal tectonic breccia related to the Atacama fault zone. In: Camus F, Sillitoe RH, Peteresen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol Spec Publ 5, pp157–169Google Scholar
  43. Zentilli M (1974) Geological evolution and metallogenic relationships in the Andes of northern Chile between 26° and 29°. Dissertation, Queens UniversityGoogle Scholar
  44. Zonenshayn LP, Savostin LA, Sedov AP (1984) Global paleogeodynamic reconstructions for the last 160 Ma. Geotectonics 18:181–195Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Roberto Oyarzun
    • 1
    Email author
  • Jorge Oyarzún
    • 2
  • Jean Jacques Ménard
    • 3
  • Javier Lillo
    • 4
  1. 1.Departamento de Cristalografía y Mineralogía, Facultad de Ciencias GeológicasUniversidad ComplutenseMadridSpain
  2. 2.Departamento de Ingeniería de Minas and CEAZA, Facultad de IngenieríaUniversidad de La SerenaLa SerenaChile
  3. 3.Institut Pédagogique NationalNouakchottMauritanie
  4. 4.Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations