pp 1–12 | Cite as

Apolipoprotein C-III and its defined lipoprotein subspecies in relation to incident diabetes: the Multi-Ethnic Study of Atherosclerosis

  • Sarah A. AronerEmail author
  • Jeremy D. Furtado
  • Frank M. Sacks
  • Michael Y. Tsai
  • Kenneth J. Mukamal
  • Robyn L. McClelland
  • Majken K. Jensen



Apolipoprotein C-III (apoC-III) is a small proinflammatory protein that may play a key role in diabetes pathophysiology. However, prior observational studies have been limited to predominantly white populations, and the biological links between apoC-III and diabetes, particularly the role of apoC-III on specific lipoprotein particles, are not yet well understood. We therefore investigated associations of total apoC-III and apoC-III-defined lipoprotein subspecies with incident diabetes and glucose metabolism measures in a multi-ethnic cohort.


For the current analyses, baseline (2000–2002) plasma total apoC-III and apolipoprotein A-I concentrations of HDL containing or lacking apoC-III were newly measured via sandwich ELISA in 4579 participants from the Multi-Ethnic Study of Atherosclerosis. Multivariable Cox regression was used to examine associations of apolipoproteins with incident diabetes until early 2012 (567 cases), and linear mixed models were used to estimate associations with longitudinally assessed continuous measures of glucose metabolism. Similar exploratory analyses of plasma apolipoprotein B concentrations of LDL and VLDL containing or lacking apoC-III were performed in a subset of participants (LDL, n = 1545; VLDL, n = 1526).


In the overall population, elevated total apoC-III concentrations were associated with a higher rate of diabetes (top vs bottom quintile, HR 1.88; 95% CI 1.42, 2.47; ptrend = 0.0002). ApoC-III-defined HDL subspecies displayed opposing associations with incidence of diabetes (p for heterogeneity = 0.02). While HDL lacking apoC-III was inversely associated with incidence of diabetes (top vs bottom quintile, HR 0.66; 95% CI 0.46, 0.93; ptrend = 0.002), HDL containing apoC-III was not associated (HR 1.11; 95% CI 0.78, 1.58; ptrend = 0.61). Similarly, only HDL lacking apoC-III was beneficially associated with plasma glucose (ptrend = 0.003), HbA1c (ptrend = 0.04) and insulin sensitivity (ptrend < 0.0001), and higher HDL containing apoC-III was associated with lower insulin sensitivity (ptrend = 0.04). Neither of the apoC-III-defined LDL subspecies was associated with incident diabetes, while VLDL was more strongly associated with the incidence of diabetes when it lacked apoC-III. Further adjustment for plasma triacylglycerols as a potential intermediate attenuated the associations of total apoC-III and apoC-III-defined lipoprotein subspecies. No statistically significant differences were observed across racial/ethnic groups.


Our findings in a multi-ethnic population support the involvement of apoC-III in the development of diabetes, potentially through its association with circulating triacylglycerols. The presence of apoC-III on HDL also diminished the protective association of HDL with incident diabetes. Further investigation of apoC-III and apoC-III-defined HDL subspecies may inform the development of novel diabetes treatment and prevention strategies.


Apolipoprotein C-III Biomarkers Diabetes Glucose metabolism Lipoproteins Observational study 



Apolipoprotein A-I


Apolipoprotein B


Apolipoprotein C-III


C-reactive protein


Cardiovascular disease


Interquartile range


Multi-Ethnic Study of Atherosclerosis


Insulin sensitivity corrected for fat-free mass


p for heterogeneity



The authors thank the MESA investigators, staff and participants for their valuable contributions. A full list of participating MESA investigators and institutions can be found at

Contribution statement

SAA drafted the manuscript, performed statistical analyses and interpreted the data with support from KJM and MKJ. JDF conducted the laboratory measurements, compiled the apolipoprotein dataset and drafted the ESM Methods. FMS and RLM provided valuable input on the study hypothesis and design, and FMS supervised laboratory measurements. MKJ conceived and designed the study and obtained funding for measures of HDL subspecies. MYT was involved in study design and data acquisition. All authors edited manuscript drafts, critically revised the manuscript for important intellectual content and gave final approval of the version to be published. MKJ is the guarantor of this work.


MESA is a National Heart, Lung, and Blood Institute (NHLBI)-funded study supported by grants R01 HL071739 and R21 HL091217 from the NHLBI, T32 DK 007703 from the National Institute of Diabetes and Digestive and Kidney Diseases, UL1-TR-000040 and UL1-TR-001079 from the National Centre for Research Resources, and by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168 and N01-HC-95169 from the NHLBI. The present study was supported by the ADA (grant no. 1-15-JF-30) and HDL apoC-III measurements were supported by an independent research grant from Roche Pharmaceuticals and by the William F. Milton Fund, Harvard Medical School.

Duality of interest

Roche Pharmaceuticals provided unrestricted funding for the development of the novel apoA-I/apoC-III ELISA and had no role in the design of the study, data collection, analyses or report. Harvard University holds a patent for the measurement of HDL subspecies by apoC-III where MKJ, JDF and FMS are named co-inventors.

Supplementary material

125_2019_4847_MOESM1_ESM.pdf (734 kb)
ESM (PDF 733 kb)


  1. 1.
    American Diabetes Association (2017) 2. Classification and diagnosis of diabetes. Diabetes Care 40(Supplement 1):S11–S24. CrossRefGoogle Scholar
  2. 2.
    Drew BG, Rye KA, Duffy SJ, Barter P, Kingwell BA (2012) The emerging role of HDL in glucose metabolism. Nat Rev Endocrinol 8(4):237–245. CrossRefPubMedGoogle Scholar
  3. 3.
    Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab 5(3):150–159. CrossRefPubMedGoogle Scholar
  4. 4.
    Wyler von Ballmoos MC, Haring B, Sacks FM (2015) The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta-analysis. J Clin Lipidol 9(4):498–510. CrossRefPubMedGoogle Scholar
  5. 5.
    Zheng C, Khoo C, Furtado J, Sacks FM (2010) Apolipoprotein C-III and the metabolic basis for hypertriglyceridemia and the dense low-density lipoprotein phenotype. Circulation 121(15):1722–1734. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sacks FM (2015) The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia. Curr Opin Lipidol 26(1):56–63. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46(2):375–382. CrossRefPubMedGoogle Scholar
  8. 8.
    Liu H, Talmud PJ, Lins L et al (2000) Characterization of recombinant wild type and site-directed mutations of apolipoprotein C-III: lipid binding, displacement of ApoE, and inhibition of lipoprotein lipase. Biochemistry 39(31):9201–9212. CrossRefPubMedGoogle Scholar
  9. 9.
    Wang CS, McConathy WJ, Kloer HU, Alaupovic P (1985) Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest 75(2):384–390. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee HY, Birkenfeld AL, Jornayvaz FR et al (2011) Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 54(5):1650–1660. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Avall K, Ali Y, Leibiger IB et al (2015) Apolipoprotein CIII links islet insulin resistance to β-cell failure in diabetes. Proc Natl Acad Sci U S A 112(20):E2611–E2619. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Holmberg R, Refai E, Hoog A et al (2011) Lowering apolipoprotein CIII delays onset of type 1 diabetes. Proc Natl Acad Sci U S A 108(26):10685–10689. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM (2006) Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 114(7):681–687. CrossRefPubMedGoogle Scholar
  14. 14.
    Kawakami A, Aikawa M, Libby P, Alcaide P, Luscinskas FW, Sacks FM (2006) Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation 113(5):691–700. CrossRefPubMedGoogle Scholar
  15. 15.
    Aroner SA, Yang M, Li J et al (2017) Apolipoprotein C-III and high-density lipoprotein subspecies defined by apolipoprotein C-III in relation to diabetes risk. Am J Epidemiol 186(6):736–744. CrossRefPubMedGoogle Scholar
  16. 16.
    Onat A, Hergenc G, Ayhan E et al (2009) Serum apolipoprotein C-III in high-density lipoprotein: a key diabetogenic risk factor in Turks. Diabet Med 26(10):981–988. CrossRefPubMedGoogle Scholar
  17. 17.
    Jensen MK, Aroner SA, Mukamal KJ et al (2017) HDL subspecies defined by presence of apolipoprotein C-III and incident coronary heart disease in four cohorts. Circulation 137:1364–1373CrossRefGoogle Scholar
  18. 18.
    Aroner SA, Koch M, Mukamal KJ et al (2018) High-density lipoprotein subspecies defined by apolipoprotein C-III and subclinical atherosclerosis measures: MESA (the Multi-Ethnic Study of Atherosclerosis). J Am Heart Assoc 7:e007824CrossRefGoogle Scholar
  19. 19.
    Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM (2011) Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation 124(19):2065–2072. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rutti S, Ehses JA, Sibler RA et al (2009) Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic β-cells. Endocrinology 150(10):4521–4530. CrossRefPubMedGoogle Scholar
  21. 21.
    Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM (2010) Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes 59(5):1153–1160. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mackey RH, Mora S, Bertoni AG et al (2015) Lipoprotein particles and incident type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis. Diabetes Care 38(4):628–636. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bild DE, Bluemke DA, Burke GL et al (2002) Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 156(9):871–881. CrossRefPubMedGoogle Scholar
  24. 24.
    McAuley KA, Williams SM, Mann JI et al (2001) Diagnosing insulin resistance in the general population. Diabetes Care 24(3):460–464. CrossRefPubMedGoogle Scholar
  25. 25.
    Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 26(Suppl 1):S5–S20Google Scholar
  26. 26.
    Petersen L, Sorensen TI, Andersen PK (2003) Comparison of case-cohort estimators based on data on premature death of adult adoptees. Stat Med 22(24):3795–3803. CrossRefPubMedGoogle Scholar
  27. 27.
    Kalbfleisch JD, Prentice RL (1980) The statistical analysis of failure time data. Wiley, ChichesterGoogle Scholar
  28. 28.
    Kohan AB (2015) Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 22(2):119–125. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Grundy SM, Brewer HB Jr, Cleeman JI et al (2004) Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109(3):433–438. CrossRefPubMedGoogle Scholar
  30. 30.
    Qin W, Sundaram M, Wang Y et al (2011) Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen. J Biol Chem 286(31):27769–27780. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sundaram M, Zhong S, Bou Khalil M et al (2010) Expression of apolipoprotein C-III in McA-RH7777 cells enhances VLDL assembly and secretion under lipid-rich conditions. J Lipid Res 51(1):150–161. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A (2014) Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 371(1):32–41. CrossRefPubMedGoogle Scholar
  33. 33.
    Peter A, Kantartzis K, Machicao F et al (2012) Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content. Int J Obes 36(6):774–782. CrossRefGoogle Scholar
  34. 34.
    Petersen KF, Dufour S, Hariri A et al (2010) Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med 362(12):1082–1089. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pollin TI, Damcott CM, Shen H et al (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322(5908):1702–1705. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute, Crosby J, Peloso GM, Auer PL, Reiner AP (2014) Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 371:22–31Google Scholar
  37. 37.
    Juntti-Berggren L, Refai E, Appelskog I et al (2004) Apolipoprotein CIII promotes Ca2+-dependent β cell death in type 1 diabetes. Proc Natl Acad Sci U S A 101(27):10090–10094. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jensen MK, Rimm EB, Furtado JD, Sacks FM (2012) Apolipoprotein C-III as a potential modulator of the association between HDL-cholesterol and incident coronary heart disease. J Am Heart Assoc 1:e000232CrossRefGoogle Scholar
  39. 39.
    Abbasi A, Corpeleijn E, Gansevoort RT et al (2013) Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab 98(8):E1352–E1359. CrossRefPubMedGoogle Scholar
  40. 40.
    Haase CL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R (2015) HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes 64(9):3328–3333. CrossRefPubMedGoogle Scholar
  41. 41.
    Njolstad I, Arnesen E, Lund-Larsen PG (1998) Sex differences in risk factors for clinical diabetes mellitus in a general population: a 12-year follow-up of the Finnmark study. Am J Epidemiol 147(1):49–58. CrossRefPubMedGoogle Scholar
  42. 42.
    von Eckardstein A, Schulte H, Assmann G (2000) Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. J Clin Endocrinol Metab 85(9):3101–3108. CrossRefGoogle Scholar
  43. 43.
    Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D'Agostino RB Sr (2007) Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring study. Arch Intern Med 167(10):1068–1074. CrossRefPubMedGoogle Scholar
  44. 44.
    Sparks JD, Sparks CE, Adeli K (2012) Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol 32(9):2104–2112. CrossRefPubMedGoogle Scholar
  45. 45.
    Roehrich ME, Mooser V, Lenain V et al (2003) Insulin-secreting β-cell dysfunction induced by human lipoproteins. J Biol Chem 278(20):18368–18375. CrossRefPubMedGoogle Scholar
  46. 46.
    Lee SJ, Campos H, Moye LA, Sacks FM (2003) LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol 23(5):853–858. CrossRefPubMedGoogle Scholar
  47. 47.
    Havel RJ (1989) Biology of cholesterol, lipoproteins and atherosclerosis. Clin Exp Hypertens A 11(5-6):887–900. CrossRefPubMedGoogle Scholar
  48. 48.
    Lee SJ, Moye LA, Campos H, Williams GH, Sacks FM (2003) Hypertriglyceridemia but not diabetes status is associated with VLDL containing apolipoprotein CIII in patients with coronary heart disease. Atherosclerosis 167(2):293–302. CrossRefPubMedGoogle Scholar
  49. 49.
    Ishibashi S, Yamada N, Shimano H, Takaku F, Akanuma Y, Murase T (1989) Composition of very-low-density lipoproteins in non-insulin-dependent diabetes mellitus. Clin Chem 35(5):808–812PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Sarah A. Aroner
    • 1
    Email author
  • Jeremy D. Furtado
    • 1
  • Frank M. Sacks
    • 1
    • 2
  • Michael Y. Tsai
    • 3
  • Kenneth J. Mukamal
    • 4
  • Robyn L. McClelland
    • 5
  • Majken K. Jensen
    • 1
    • 2
  1. 1.Department of NutritionHarvard T.H. Chan School of Public HealthBostonUSA
  2. 2.Channing Division of Network Medicine, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  4. 4.Division of General Medicine and Primary CareBeth Israel Deaconess Medical CenterBostonUSA
  5. 5.Department of BiostatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations