, Volume 62, Issue 5, pp 822–834 | Cite as

Cellular proliferation in mouse and human pancreatic islets is regulated by serpin B13 inhibition and downstream targeting of E-cadherin by cathepsin L

  • Chi-Wen Lo
  • Yury Kryvalap
  • Tzong-jen Sheu
  • Ching-Ho Chang
  • Jan CzyzykEmail author



We previously reported that exposure to antibodies neutralising serpin B13, a protease inhibitor expressed in exocrine pancreatic ducts, promotes beta cell proliferation, underscoring the importance of a functional relationship between exocrine and endocrine pancreas. The aim of the present study was to identify the molecular events that link inhibition of serpin B13 to islet cell proliferation.


We used an in vitro culture system consisting of isolated pancreatic islets, an extract of pancreatic ductal epithelium and a monoclonal antibody (mAb) to serpin B13 or IgG isotype control. In vivo studies involved treatment of mice with these mAbs.


The catalytic activity of cathepsin L (CatL), a cysteine protease target of serpin B13, was augmented in the pancreas of mice injected with serpin B13 mAb. Furthermore, the addition of serpin B13 mAb to the islets, together with the pancreatic ductal epithelium lysate, caused CatL-dependent cleavage of E-cadherin and concomitant upregulation of REG genes, ultimately leading to beta cell proliferation. Direct blockade of E-cadherin with mAb also markedly enhanced REG gene induction, while chemical inhibition of β-catenin, a binding target of E-cadherin, prevented the serpin B13 mAb-induced upregulation of REG genes.


Our work implicates the CatL–E-cadherin–REG pathway in the regulation of islet cell proliferation in response to signals generated in exocrine pancreatic tissue and demonstrates that protease activity may promote adaptive changes in the islets.

Data availability

Microarray data that support the findings of this study have been deposited in Gene Expression Omnibus (GEO) with the accession no. GSE125151.


Beta cell proliferation Pancreatic islets Proteases Serpins 



Cathepsin L


Dolichos biflorus agglutinin




Monoclonal antibody



Some of the data were presented as an abstract at the ADA 77th Scientific Sessions meeting in 2017.

Contribution statement

C-WL designed and performed experiments, analysed the data and helped to write, edit and review the manuscript. YK and T-JS helped to design experiments and interpret results. C-HC was responsible for analysing microarray data. JC designed experiments, interpreted results and wrote the manuscript. All authors participated in drafting the article and gave their final approval. JC is responsible for the integrity of the work as a whole.


This work was supported by the Juvenile Diabetes Research Foundation Grant no.17–2013-428 and the American Diabetes Association Grant no. 1–17-ICTS-083 (awarded to JC).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2019_4834_MOESM1_ESM.pdf (4.8 mb)
ESM (PDF 4890 kb)


  1. 1.
    Baldzizhar R, Fedorchuk C, Jha M, Rathinam C, Henegariu O, Czyzyk J (2013) Anti-serpin antibody-mediated regulation of proteases in autoimmune diabetes. J Biol Chem 288(3):1612–1619. CrossRefPubMedGoogle Scholar
  2. 2.
    Welss T, Sun J, Irving JA et al (2003) Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry 42(24):7381–7389. CrossRefPubMedGoogle Scholar
  3. 3.
    Jayakumar A, Kang Y, Frederick MJ et al (2003) Inhibition of the cysteine proteinases cathepsins K and L by the serpin headpin (SERPINB13): a kinetic analysis. Arch Biochem Biophys 409(2):367–374. CrossRefPubMedGoogle Scholar
  4. 4.
    Silverman GA, Whisstock JC, Askew DJ et al (2004) Human clade B serpins (ov-serpins) belong to a cohort of evolutionarily dispersed intracellular proteinase inhibitor clades that protect cells from promiscuous proteolysis. Cell Mol Life Sci 61(3):301–325. CrossRefPubMedGoogle Scholar
  5. 5.
    Van de Casteele M, Leuckx G, Baeyens L et al (2013) Neurogenin 3+ cells contribute to β-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Dis 4(3):e523. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kryvalap Y, Lo CW, Manuylova E, Baldzizhar R, Jospe N, Czyzyk J (2016) Antibody response to serpin B13 induces adaptive changes in mouse pancreatic islets and slows down the decline in the residual beta cell function in children with recent onset of type 1 diabetes mellitus. J Biol Chem 291(1):266–278. CrossRefPubMedGoogle Scholar
  7. 7.
    Terazono K, Yamamoto H, Takasawa S et al (1988) A novel gene activated in regenerating islets. J Biol Chem 263(5):2111–2114PubMedGoogle Scholar
  8. 8.
    Huszarik K, Wright B, Keller C et al (2010) Adjuvant immunotherapy increases β cell regenerative factor Reg2 in the pancreas of diabetic mice. J Immunol 185(9):5120–5129. CrossRefPubMedGoogle Scholar
  9. 9.
    Pittenger GL, Taylor-Fishwick D, Vinik AI (2009) The role of islet neogeneis-associated protein (INGAP) in pancreatic islet neogenesis. Curr Protein Pept Sci 10(1):37–45. CrossRefPubMedGoogle Scholar
  10. 10.
    Pittenger GL, Taylor-Fishwick DA, Johns RH, Burcus N, Kosuri S, Vinik AI (2007) Intramuscular injection of islet neogenesis-associated protein peptide stimulates pancreatic islet neogenesis in healthy dogs. Pancreas 34(1):103–111. CrossRefPubMedGoogle Scholar
  11. 11.
    Lai Y, Li D, Li C et al (2012) The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 37(1):74–84. CrossRefPubMedGoogle Scholar
  12. 12.
    Czyzyk J, Henegariu O, Preston-Hurlburt P et al (2012) Enhanced anti-serpin antibody activity inhibits autoimmune inflammation in type 1 diabetes. J Immunol 188(12):6319–6327. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Reichert M, Takano S, Heeg S, Bakir B, Botta GP, Rustgi AK (2013) Isolation, culture and genetic manipulation of mouse pancreatic ductal cells. Nat Protoc 8(7):1354–1365. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Unno M, Nata K, Noguchi N et al (2002) Production and characterization of Reg knockout mice: reduced proliferation of pancreatic β-cells in Reg knockout mice. Diabetes 51(Suppl 3):S478–S483. CrossRefPubMedGoogle Scholar
  15. 15.
    Ota H, Itaya-Hironaka A, Yamauchi A et al (2013) Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene. Life Sci 93(18-19):664–672. CrossRefPubMedGoogle Scholar
  16. 16.
    Liu JL, Cui W, Li B, Lu Y (2008) Possible roles of reg family proteins in pancreatic islet cell growth. Endocr Metab Immune Disord Drug Targets 8(1):1–10. CrossRefPubMedGoogle Scholar
  17. 17.
    Ding S, Blue RE, Morgan DR, Lund PK (2014) Comparison of multiple enzyme activatable near-infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models. Inflamm Bowel Dis 20(2):363–377. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rogers GJ, Hodgkin MN, Squires PE (2007) E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell Physiol Biochem 20(6):987–994. CrossRefPubMedGoogle Scholar
  19. 19.
    Bosco D, Rouiller DG, Halban PA (2007) Differential expression of E-cadherin at the surface of rat β-cells as a marker of functional heterogeneity. J Endocrinol 194(1):21–29. CrossRefPubMedGoogle Scholar
  20. 20.
    Torres VA, Tapia JC, Rodriguez DA et al (2007) E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced β-catenin-Tcf/Lef-dependent transcription. Mol Cell Biol 27(21):7703–7717. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leibel RL (2013) Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia 56(4):856–866. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jing D, Kehoe DE, Tzanakakis ES (2010) Expression of Reg family proteins in embryonic stem cells and its modulation by Wnt/β-catenin signaling. Stem Cells Dev 19(9):1307–1319. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cavard C, Terris B, Grimber G et al (2006) Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with β-catenin mutations. Oncogene 25(4):599–608. CrossRefPubMedGoogle Scholar
  24. 24.
    Dahl U, Sjodin A, Semb H (1996) Cadherins regulate aggregation of pancreatic β-cells in vivo. Development 122(9):2895–2902PubMedGoogle Scholar
  25. 25.
    Esni F, Taljedal IB, Perl AK, Cremer H, Christofori G, Semb H (1999) Neural cell adhesion molecule (N-CAM) is required for cell type segregation and normal ultrastructure in pancreatic islets. J Cell Biol 144(2):325–337. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Watanabe T, Yonemura Y, Yonekura H et al (1994) Pancreatic beta-cell replication and amelioration of surgical diabetes by Reg protein. Proc Natl Acad Sci U S A 91(9):3589–3592. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li Q, Li B, Miao X, Ramgattie C, Gao ZH, Liu JL (2017) Reg2 expression is required for pancreatic islet compensation in response to aging and high-fat diet-induced obesity. Endocrinology 158(6):1634–1644. CrossRefPubMedGoogle Scholar
  28. 28.
    Carvell MJ, Marsh PJ, Persaud SJ, Jones PM (2007) E-cadherin interactions regulate β-cell proliferation in islet-like structures. Cell Physiol Biochem 20(5):617–626. CrossRefPubMedGoogle Scholar
  29. 29.
    Maretzky T, Reiss K, Ludwig A et al (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation. Proc Natl Acad Sci U S A 102(26):9182–9187. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Maehr R, Mintern JD, Herman AE et al (2005) Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. J Clin Invest 115(10):2934–2943. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hsing LC, Kirk EA, McMillen TS et al (2010) Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. J Autoimmun 34(2):96–104. CrossRefPubMedGoogle Scholar
  32. 32.
    Floyel T, Brorsson C, Nielsen LB et al (2014) CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A 111(28):10305–10310. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yasothornsrikul S, Greenbaum D, Medzihradszky KF et al (2003) Cathepsin L in secretory vesicles functions as a prohormone-processing enzyme for production of the enkephalin peptide neurotransmitter. Proc Natl Acad Sci U S A 100(16):9590–9595. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kuliawat R, Klumperman J, Ludwig T, Arvan P (1997) Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic β-cells. J Cell Biol 137(3):595–608. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90(2):194–207. CrossRefPubMedGoogle Scholar
  37. 37.
    Pislar A, Perisic Nanut M, Kos J (2015) Lysosomal cysteine peptidases - molecules signaling tumor cell death and survival. Semin Cancer Biol 35:168–179. CrossRefPubMedGoogle Scholar
  38. 38.
    Urbich C, Heeschen C, Aicher A et al (2005) Cathepsin L is required for endothelial progenitor cell-induced neovascularization. Nat Med 11(2):206–213. CrossRefPubMedGoogle Scholar
  39. 39.
    El Ouaamari A, Dirice E, Gedeon N et al (2016) SerpinB1 promotes pancreatic β cell proliferation. Cell Metab 23(1):194–205. CrossRefPubMedGoogle Scholar
  40. 40.
    Shellenberger TD, Mazumdar A, Henderson Y et al (2005) Headpin: a serpin with endogenous and exogenous suppression of angiogenesis. Cancer Res 65(24):11501–11509. CrossRefPubMedGoogle Scholar
  41. 41.
    Chen H, Gu X, Liu Y et al (2011) PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature 478(7369):349–355. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xiao X, Gaffar I, Guo P et al (2014) M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A 111(13):E1211–E1220. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sharma RB, O’Donnell AC, Stamateris RE et al (2015) Insulin demand regulates beta cell number via the unfolded protein response. J Clin Invest 125(10):3831–3846. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Teta M, Long SY, Wartschow LM, Rankin MM, Kushner JA (2005) Very slow turnover of β-cells in aged adult mice. Diabetes 54(9):2557–2567. CrossRefPubMedGoogle Scholar
  45. 45.
    Jackson J, Sim RB, Whelan A, Feighery C (1986) An IgG autoantibody which inactivates C1-inhibitor. Nature 323(6090):722–724. CrossRefPubMedGoogle Scholar
  46. 46.
    Daha MR, Fearon DT, Austen KF (1976) C3 nephritic factor (C3NeF): stabilization of fluid phase and cell-bound alternative pathway convertase. J Immunol 116:1–7PubMedGoogle Scholar
  47. 47.
    Campbell-Thompson ML, Kaddis JS, Wasserfall C et al (2016) The influence of type 1 diabetes on pancreatic weight. Diabetologia 59(1):217–221. CrossRefPubMedGoogle Scholar
  48. 48.
    Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG (2014) Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes 63(11):3880–3890. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chi-Wen Lo
    • 1
  • Yury Kryvalap
    • 2
  • Tzong-jen Sheu
    • 3
  • Ching-Ho Chang
    • 4
  • Jan Czyzyk
    • 2
    Email author
  1. 1.Department of Pathology and Laboratory MedicineUniversity of RochesterRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisUSA
  3. 3.The Center for Musculoskeletal ResearchUniversity of RochesterRochesterUSA
  4. 4.Department of BiologyUniversity of RochesterRochesterUSA

Personalised recommendations