pp 1–14 | Cite as

Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial

  • Pieter F. de GrootEmail author
  • Tatjana Nikolic
  • Sultan Imangaliyev
  • Siroon Bekkering
  • Gaby Duinkerken
  • Fleur M. Keij
  • Hilde Herrema
  • Maaike Winkelmeijer
  • Jeffrey Kroon
  • Evgeni Levin
  • Barbara Hutten
  • Elles M. Kemper
  • Suat Simsek
  • Johannes H. M. Levels
  • Flora A. van Hoorn
  • Renuka Bindraban
  • Alicia Berkvens
  • Geesje M. Dallinga-Thie
  • Mark Davids
  • Frits Holleman
  • Joost B. L. Hoekstra
  • Erik S. G. Stroes
  • Mihai Netea
  • Daniël H. van Raalte
  • Bart O. Roep
  • Max Nieuwdorp



The pathophysiology of type 1 diabetes has been linked to altered gut microbiota and more specifically to a shortage of intestinal production of the short-chain fatty acid (SCFA) butyrate, which may play key roles in maintaining intestinal epithelial integrity and in human and gut microbial metabolism. Butyrate supplementation can protect against autoimmune diabetes in mouse models. We thus set out to study the effect of oral butyrate vs placebo on glucose regulation and immune variables in human participants with longstanding type 1 diabetes.


We administered a daily oral dose of 4 g sodium butyrate or placebo for 1 month to 30 individuals with longstanding type 1 diabetes, without comorbidity or medication use, in a randomised (1:1), controlled, double-blind crossover trial, with a washout period of 1 month in between. Participants were randomly allocated to the ‘oral sodium butyrate capsules first’ or ‘oral placebo capsules first’ study arm in blocks of five. The clinical investigator received blinded medication from the clinical trial pharmacy. All participants, people doing measurements or examinations, or people assessing the outcomes were blinded to group assignment. The primary outcome was a change in the innate immune phenotype (monocyte subsets and in vitro cytokine production). Secondary outcomes were changes in blood markers of islet autoimmunity (cell counts, lymphocyte stimulation indices and CD8 quantum dot assays), glucose and lipid metabolism, beta cell function (by mixed-meal test), gut microbiota and faecal SCFA. The data was collected at the Amsterdam University Medical Centers.


All 30 participants were analysed. Faecal butyrate and propionate levels were significantly affected by oral butyrate supplementation and butyrate treatment was safe. However, this modulation of intestinal SCFAs did not result in any significant changes in adaptive or innate immunity, or in any of the other outcome variables. In our discussion, we elaborate on this important discrepancy with previous animal work.


Oral butyrate supplementation does not significantly affect innate or adaptive immunity in humans with longstanding type 1 diabetes.

Trial registration

Netherlands Trial Register: NL4832 (

Data availability

Raw sequencing data are available in the European Nucleotide Archive repository ( under study PRJEB30292.


The study was funded by a Le Ducq consortium grant, a CVON grant, a personal ZONMW-VIDI grant and a Dutch Heart Foundation grant.


Butyrate Diabetes Microbiota Short-chain fatty acids 



C-C chemokine receptor


C-reactive protein


CXC chemokine receptor


Defective ribosomal product


Islet antigen


Iscove’s modified Dulbecco’s medium


Interquartile range




Mean fluorescence intensity


Natural killer


Peripheral blood mononuclear cell




Short-chain fatty acid


T regulatory cell



We cordially thank C. Rustemeijer (Amstelland Hospital, Amstelveen, the Netherlands), V. Gerdes (Amsterdam UMC, Amsterdam, the Netherlands), T. Brouwer (OLVG Hospital, Amsterdam, the Netherlands), S. van Dam (OLVG Hospital, Amsterdam, the Netherlands) and J. Hensbergen (Amsterdam UMC, Amsterdam, the Netherlands) for inclusion of participants.

Contribution statement

PFdeG, FH, JBLH, BOR and MNi designed the study. SS substantially contributed to the acquisition of data. PFdeG, BOR, MNe, ESGS, FMK, DHvR, TN, SB, GD, HH, MW, BH, JK, EMK, JHML, SI, EL, GMD-T, MD, FAvH, RB and AB contributed to the analysis and/or interpretation of data. PFdeG, BOR and MNi drafted the manuscript. All authors critically revised the manuscript. All authors gave their approval of the final (published) version of the manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. PFdeG is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.


This study was supported by Le Ducq consortium grant 17CVD01 (to MNi) and CVON grant 2O18.27 (to SB, MNe and MNi). MNi is supported by a personal ZONMW-VIDI grant 2013 (016.146.327) and a Dutch Heart Foundation grant.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2019_5073_MOESM1_ESM.pdf (1.8 mb)
ESM (PDF 1793 kb)
125_2019_5073_MOESM2_ESM.csv (1010 kb)
ESM Table 2 (CSV 1009 kb)
125_2019_5073_MOESM3_ESM.csv (1.9 mb)
ESM Table 3 (CSV 1990 kb)


  1. 1.
    Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 373(9680):2027–2033. CrossRefPubMedGoogle Scholar
  2. 2.
    Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6(10):e25792. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Davis-Richardson AG, Triplett EW (2015) A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 58(7):1386–1393. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    de Goffau MC, Luopajärvi K, Knip M et al (2013) Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62(4):1238–1244. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    de Goffau MC, Fuentes S, van den Bogert B et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57(8):1569–1577. CrossRefPubMedGoogle Scholar
  6. 6.
    Samuelsson U, Ludvigsson J (2004) The concentrations of short-chain fatty acids and other microflora-associated characteristics in faeces from children with newly diagnosed type 1 diabetes and control children and their family members. Diabet Med 21(1):64–67. CrossRefPubMedGoogle Scholar
  7. 7.
    de Groot PF, Belzer C, Aydin O et al (2017) Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS One 12(12):e0188475. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Russo I, Luciani A, De Cicco P, Troncone E, Ciacci C (2012) Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PLoS One 7(3):e32841. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cleophas MCP, Ratter JM, Bekkering S et al (2019) Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep 9(1):775. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504(7480):451–455. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. CrossRefPubMedGoogle Scholar
  12. 12.
    Zimmerman MA, Singh N, Martin PM et al (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 302(12):G1405–G1415. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jaakkola I, Jalkanen S, Hänninen A (2003) Diabetogenic T cells are primed both in pancreatic and gut-associated lymph nodes in NOD mice. Eur J Immunol 33(12):3255–3264. CrossRefPubMedGoogle Scholar
  14. 14.
    Endesfelder D, Engel M, Davis-Richardson AG et al (2016) Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome 4(1):17. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Marino E, Richards JL, McLeod KH et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562. CrossRefPubMedGoogle Scholar
  16. 16.
    Markle JGM, Frank DN, Adeli K, von Bergen M, Danska JS (2014) Microbiome manipulation modifies sex-specific risk for autoimmunity. Gut Microbes 5(4):485–493. CrossRefPubMedGoogle Scholar
  17. 17.
    Desai MS, Seekatz AM, Koropatkin NM et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(5):1339–1353.e21. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bosi E, Molteni L, Radaelli MG et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49(12):2824–2827. CrossRefPubMedGoogle Scholar
  19. 19.
    Devaraj S, Dasu MR, Park SH, Jialal I (2009) Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52(8):1665–1668. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 111(6):2247–2252. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ohata A, Usami M, Miyoshi M (2005) Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition 21(7):838–847. CrossRefPubMedGoogle Scholar
  22. 22.
    Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209(1):51–60. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Oram RA, Jones AG, Besser REJ et al (2014) The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia 57(1):187–191. CrossRefPubMedGoogle Scholar
  25. 25.
    Williams GM, Long AE, Wilson IV et al (2016) Beta cell function and ongoing autoimmunity in long-standing, childhood onset type 1 diabetes. Diabetologia 59(12):2722–2726. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Campbell-Thompson M, Fu A, Kaddis JS et al (2016) Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes 65(3):719–731. CrossRefPubMedGoogle Scholar
  27. 27.
    Netea MG, Joosten LAB, Latz E et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352(6284):aaf1098. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kootte RS, Vrieze A, Holleman F et al (2012) The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab 14(2):112–120. CrossRefPubMedGoogle Scholar
  29. 29.
    Di Sabatino A, Morera R, Ciccocioppo R et al (2005) Oral butyrate for mildly to moderately active Crohn’s disease. Aliment Pharmacol Ther 22(9):789–794. CrossRefPubMedGoogle Scholar
  30. 30.
    Bouter K, Bakker GJ, Levin E et al (2018) Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol 9(5):155. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moran A, Bundy B, Becker DJ et al (2013) Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381(9881):1905–1915. CrossRefPubMedGoogle Scholar
  32. 32.
    Lachin JM, McGee PL, Greenbaum CJ et al (2011) Sample size requirements for studies of treatment effects on beta-cell function in newly diagnosed type 1 diabetes. PLoS One 6(11):e26471. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    van der Valk FM, Bekkering S, Kroon J et al (2016) Oxidized phospholipids on lipoprotein(a) elicit arterial wall inflammation and an inflammatory monocyte response in humans. Circulation 134(8):611–624. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Velthuis JH, Unger WW, Abreu JRF et al (2010) Simultaneous detection of circulating autoreactive CD8+ T cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59(7):1721–1730. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    De Baere S, Eeckhaut V, Steppe M et al (2013) Development of a HPLC-UV method for the quantitative determination of four short-chain fatty acids and lactic acid produced by intestinal bacteria during in vitro fermentation. J Pharm Biomed Anal 80:107–115. CrossRefPubMedGoogle Scholar
  36. 36.
    Salonen A, Nikkila J, Jalanka-Tuovinen J et al (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81(2):127–134. CrossRefPubMedGoogle Scholar
  37. 37.
    Ramiro-Garcia J, Hermes GDA, Giatsis C et al (2016) NG-tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes [version 1; referees: 2 approved with reservations, 1 not approved]. F1000Res 5:1791. CrossRefPubMedGoogle Scholar
  38. 38.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79(17):5112–5120. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kootte RS, Levin E, Salojarvi J et al (2017) Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab 26(4):611–619.e6. CrossRefPubMedGoogle Scholar
  40. 40.
    Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, pp 785–794Google Scholar
  41. 41.
    Meinshausen N, Bühlmann P (2010) Stability selection. J R Stat Soc Series B Stat Methodol 72(4):417–473. CrossRefGoogle Scholar
  42. 42.
    Endesfelder D, Zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63(6):2006–2014. CrossRefPubMedGoogle Scholar
  43. 43.
    Martin S, Wolf-Eichbaum D, Duinkerken G et al (2001) Development of type 1 diabetes despite severe hereditary B cell deficiency. N Engl J Med 345(14):1036–1040. CrossRefPubMedGoogle Scholar
  44. 44.
    Badami E, Sorini C, Coccia M et al (2011) Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 60(8):2120–2124. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Roep BO, Stobbe I, Duinkerken G et al (1999) Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. Diabetes 48(3):484–490. CrossRefPubMedGoogle Scholar
  46. 46.
    Huurman VAL, Hilbrands R, Pinkse GGM et al (2008) Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One 3(6):e2435. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pinkse GGM, Tysma OHM, Bergen CAM et al (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 102(51):18425–18430. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tan S, Li Y, Xia J et al (2017) Type 1 diabetes induction in humanized mice. Proc Natl Acad Sci U S A 114(41):10954–10959. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Babon JAB, DeNicola ME, Blodgett DM et al (2016) Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med 22(12):1482–1487. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rouxel O, Da Silva J, Beaudoin L et al (2017) Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol 18(12):1321–1331. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lynch L, O’Donoghue D, Dean J, O’Sullivan J, O’Farrelly C, Golden-Mason L (2006) Detection and characterization of hemopoietic stem cells in the adult human small intestine. J Immunol 176(9):5199–5204CrossRefGoogle Scholar
  52. 52.
    Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus Å, Korsgren O (2012) On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. Am J Pathol 181(5):1735–1748. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    van der Beek CM, Bloemen JG, van den Broek MA et al (2015) Hepatic uptake of rectally administered butyrate prevents an increase in systemic butyrate concentrations in humans. J Nutr 145(9):2019–2024. CrossRefPubMedGoogle Scholar
  54. 54.
    David LA, Maurice CF, Carmody RN et al (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Pieter F. de Groot
    • 1
    Email author
  • Tatjana Nikolic
    • 2
  • Sultan Imangaliyev
    • 1
  • Siroon Bekkering
    • 1
    • 3
  • Gaby Duinkerken
    • 2
  • Fleur M. Keij
    • 2
  • Hilde Herrema
    • 1
  • Maaike Winkelmeijer
    • 1
  • Jeffrey Kroon
    • 1
  • Evgeni Levin
    • 1
  • Barbara Hutten
    • 4
  • Elles M. Kemper
    • 5
  • Suat Simsek
    • 6
  • Johannes H. M. Levels
    • 1
  • Flora A. van Hoorn
    • 1
  • Renuka Bindraban
    • 1
  • Alicia Berkvens
    • 1
  • Geesje M. Dallinga-Thie
    • 1
  • Mark Davids
    • 1
  • Frits Holleman
    • 1
  • Joost B. L. Hoekstra
    • 1
  • Erik S. G. Stroes
    • 1
  • Mihai Netea
    • 3
    • 7
  • Daniël H. van Raalte
    • 1
    • 8
  • Bart O. Roep
    • 2
    • 9
  • Max Nieuwdorp
    • 1
    • 8
  1. 1.Department of Internal and Vascular MedicineAcademic Medical CenterAmsterdamthe Netherlands
  2. 2.Department of Immunohematology and Blood TransfusionLeiden University Medical CenterLeidenthe Netherlands
  3. 3.Department of Internal MedicineRadboud University Medical CenterNijmegenthe Netherlands
  4. 4.Department of Epidemiology, Amsterdam University Medical Centers, Academic Medical CentreAmsterdamthe Netherlands
  5. 5.Clinical Pharmacy, Amsterdam University Medical Centers, Academic Medical CentreAmsterdamthe Netherlands
  6. 6.Department of Internal MedicineAlkmaar Medical Center (MCA)Alkmaarthe Netherlands
  7. 7.Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES)University of BonnBonnGermany
  8. 8.Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, VU University Medical CentreAmsterdamthe Netherlands
  9. 9.Department of Diabetes Immunology, Diabetes & Metabolism Research Institute at the Beckman Research Institute, City of HopeDuarteUSA

Personalised recommendations