Advertisement

Diabetologia

pp 1–17 | Cite as

A prospective study of associations between in utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence

  • Wei PerngEmail author
  • Brandy M. Ringham
  • Harry A. Smith
  • Gregory Michelotti
  • Katerina M. Kechris
  • Dana Dabelea
Article

Abstract

Aims/hypothesis

This study aimed to: (1) identify metabolite patterns during late childhood that differ with respect to exposure to maternal gestational diabetes mellitus (GDM); (2) examine the persistence of GDM/metabolite associations 5 years later, during adolescence; and (3) investigate the associations of metabolite patterns with adiposity and metabolic biomarkers from childhood through adolescence.

Methods

This study included 592 mother–child pairs with information on GDM exposure (n = 92 exposed), untargeted metabolomics data at age 6–14 years (T1) and at 12–19 years (T2), and information on adiposity and metabolic risk biomarkers at T1 and T2. We first consolidated 767 metabolites at T1 into factors (metabolite patterns) via principal component analysis (PCA) and used multivariable regression to identify factors that differed by GDM exposure, at α = 0.05. We then examined associations of GDM with individual metabolites within factors of interest at T1 and T2, and investigated associations of GDM-related factors at T1 with adiposity and metabolic risk throughout T1 and T2 using mixed-effects linear regression models.

Results

Of the six factors retained from PCA, GDM exposure was associated with greater odds of being in quartile (Q)4 (vs Q1–3) of ‘Factor 4’ at T1 after accounting for age, sex, race/ethnicity, maternal smoking habits during pregnancy, Tanner stage, physical activity and total energy intake, at α = 0.05 (OR 1.78 [95% CI 1.04, 3.04]; p = 0.04). This metabolite pattern comprised phosphatidylcholines, diacylglycerols and phosphatidylethanolamines. GDM was consistently associated with elevations in a subset of individual compounds within this pattern at T1 and T2. While this metabolite pattern was not related to the health outcomes in boys, it corresponded with greater adiposity and a worse metabolic profile among girls throughout the follow-up period. Each 1-unit increment in Factor 4 corresponded with 0.17 (0.08, 0.25) units higher BMI z score, 8.83 (5.07, 12.59) pmol/l higher fasting insulin, 0.28 (0.13, 0.43) units higher HOMA-IR, and 4.73 (2.15, 7.31) nmol/l higher leptin.

Conclusions/interpretation

Exposure to maternal GDM was nominally associated with a metabolite pattern characterised by elevated serum phospholipids in late childhood and adolescence at α = 0.05. This metabolite pattern was associated with greater adiposity and metabolic risk among female offspring throughout the late childhood-to-adolescence transition. Future studies are warranted to confirm our findings.

Keywords

Adiponectin Adolescence Gestational diabetes mellitus Insulin resistance Leptin Prospective cohort study Untargeted metabolomics 

Abbreviations

3DPAR

3-Day Physical Activity Recall

EPOCH

Exploring Perinatal Outcomes among Children

GDM

Gestational diabetes mellitus

ICC

Intra-class correlation

GPC

Glycero-phosphocholine

GPE

Glycerophosphoethanolamine

IQR

Interquartile range

KPCO

Kaiser Permanente of Colorado

MET

Metabolic equivalent

PCA

Principal component analysis

Q

Quartile

SAT

Subcutaneous adipose tissue

SCD

Stearoyl- CoA desaturase

T1

2006–2009 study period

T2

2012–2015 study period (follow-up)

VAT

Visceral adipose tissue

Notes

Acknowledgements

We thank the EPOCH participants, as well as past and present research assistants.

Contribution statement

WP and DD conceived the research question. WP is the guarantor of this work. WP conducted the analysis, wrote the initial draft of the paper and incorporated co-author comments. BMR, KMK and HAS curated the data and provided feedback on the analysis. GM oversaw the laboratory analysis for the metabolomics assays and participated in the writing of the manuscript. BMR, HAS, KMK and DD revised the article critically for important intellectual content. All co-authors approved the final version of the paper.

Funding

This study was supported by the National Institutes of Health (NIH), National Institute of Diabetes, Digestive, and Kidney Diseases (R01 DK068001). The funders had no role in the design, conduct or reporting of this work.

Duality of interest

GM is an employee at Metabolon, Inc. All other authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2019_5036_MOESM1_ESM.pdf (227 kb)
ESM (PDF 227 kb)

References

  1. 1.
    Kim SY, England JL, Sharma JA, Njoroge T (2011) Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Exp Diabetes Res 2011:541308.  https://doi.org/10.1155/2011/541308 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Catalano PM, Thomas A, Huston-Presley L, Amini SB (2003) Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol 189(6):1698–1704.  https://doi.org/10.1016/s0002-9378(03)00828-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Sauder KA, Hockett CW, Ringham BM, Glueck DH, Dabelea D (2017) Fetal overnutrition and offspring insulin resistance and beta-cell function: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabet Med 34(10):1392–1399.  https://doi.org/10.1111/dme.13417 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Krishnaveni GV, Veena SR, Hill JC, Kehoe S, Karat SC, Fall CH (2010) Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care 33(2):402–404.  https://doi.org/10.2337/dc09-1393 CrossRefPubMedGoogle Scholar
  5. 5.
    Gautier JF, Wilson C, Weyer C et al (2001) Low acute insulin secretory responses in adult offspring of people with early onset type 2 diabetes. Diabetes 50(8):1828–1833CrossRefGoogle Scholar
  6. 6.
    West NA, Crume TL, Maligie MA, Dabelea D (2011) Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia 54(3):504–507.  https://doi.org/10.1007/s00125-010-2008-1 CrossRefPubMedGoogle Scholar
  7. 7.
    Wright CS, Rifas-Shiman SL, Rich-Edwards JW, Taveras EM, Gillman MW, Oken E (2009) Intrauterine exposure to gestational diabetes, child adiposity, and blood pressure. Am J Hypertens 22(2):215–220.  https://doi.org/10.1038/ajh.2008.326 CrossRefPubMedGoogle Scholar
  8. 8.
    Bunt JC, Tataranni PA, Salbe AD (2005) Intrauterine exposure to diabetes is a determinant of hemoglobin A1c and systolic blood pressure in pima Indian children. J Clin Endocrinol Metab 90(6):3225–3229.  https://doi.org/10.1210/jc.2005-0007 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hivert MF, Perng W, Watkins SM et al (2015) Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J Dev Orig Health Dis 6(2):65–78.  https://doi.org/10.1017/s204017441500001x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bentley-Lewis R, Huynh J, Xiong G et al (2015) Metabolomic profiling in the prediction of gestational diabetes mellitus. Diabetologia 58(6):1329–1332.  https://doi.org/10.1007/s00125-015-3553-4 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    de Seymour JV, Conlon CA, Sulek K et al (2014) Early pregnancy metabolite profiling discovers a potential biomarker for the subsequent development of gestational diabetes mellitus. Acta Diabetol 51(5):887–890.  https://doi.org/10.1007/s00592-014-0626-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Diaz SO, Pinto J, Graca G et al (2011) Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res 10(8):3732–3742.  https://doi.org/10.1021/pr200352m CrossRefPubMedGoogle Scholar
  13. 13.
    Enquobahrie DA, Denis M, Tadesse MG, Gelaye B, Ressom HW, Williams MA (2015) Maternal early pregnancy serum metabolites and risk of gestational diabetes mellitus. J Clin Endocrinol Metab 100(11):4348–4356.  https://doi.org/10.1210/jc.2015-2862 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Graca G, Duarte IF, Barros AS et al (2010) Impact of prenatal disorders on the metabolic profile of second trimester amniotic fluid: a nuclear magnetic resonance metabonomic study. J Proteome Res 9(11):6016–6024.  https://doi.org/10.1021/pr100815q CrossRefPubMedGoogle Scholar
  15. 15.
    Nevalainen J, Sairanen M, Appelblom H, Gissler M, Timonen S, Ryynanen M (2016) First-trimester maternal serum amino acids and acylcarnitines are significant predictors of gestational diabetes. Rev Diabet Stud 13(4):236–245.  https://doi.org/10.1900/rds.2016.13.236 CrossRefPubMedGoogle Scholar
  16. 16.
    Pinto J, Almeida LM, Martins AS et al (2015) Prediction of gestational diabetes through NMR metabolomics of maternal blood. J Proteome Res 14(6):2696–2706.  https://doi.org/10.1021/acs.jproteome.5b00260 CrossRefPubMedGoogle Scholar
  17. 17.
    Pinto J, Barros AS, Domingues MR et al (2015) Following healthy pregnancy by NMR metabolomics of plasma and correlation to urine. J Proteome Res 14(2):1263–1274.  https://doi.org/10.1021/pr5011982 CrossRefPubMedGoogle Scholar
  18. 18.
    Lowe WL Jr, Bain JR, Nodzenski M et al (2017) Maternal BMI and glycemia impact the fetal metabolome. Diabetes Care 40(7):902–910.  https://doi.org/10.2337/dc16-2452 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shokry E, Marchioro L, Uhl O et al (2019) Impact of maternal BMI and gestational diabetes mellitus on maternal and cord blood metabolome: results from the PREOBE cohort study. Acta Diabetol 56(4):421–430.  https://doi.org/10.1007/s00592-019-01291-z CrossRefPubMedGoogle Scholar
  20. 20.
    Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453(7196):783–787.  https://doi.org/10.1038/nature06902 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alberga AS, Sigal RJ, Goldfield G, Prud’homme D, Kenny GP (2012) Overweight and obese teenagers: why is adolescence a critical period? Pediatric Obesity 7(4):261–273.  https://doi.org/10.1111/j.2047-6310.2011.00046.x CrossRefPubMedGoogle Scholar
  22. 22.
    Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453.  https://doi.org/10.1038/nm.2307 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Crume TL, Ogden L, West NA et al (2011) Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabetologia 54(1):87–92.  https://doi.org/10.1007/s00125-010-1925-3 CrossRefPubMedGoogle Scholar
  24. 24.
    National Diabetes Data Group (1979) Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28(12):1039–1057.  https://doi.org/10.2337/diab.28.12.1039 CrossRefGoogle Scholar
  25. 25.
    Crume TL, Ogden L, Daniels S, Hamman RF, Norris JM, Dabelea D (2011) The impact of in utero exposure to diabetes on childhood body mass index growth trajectories: the EPOCH study. J Pediatr 158(6):941–946.  https://doi.org/10.1016/j.jpeds.2010.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Crume TL, Ogden L, Maligie M et al (2011) Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care 34(3):641–645.  https://doi.org/10.2337/dc10-1716 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Smilde AK, van der Werf MJ, Bijlsma S, van der Werff-van der Vat BJC, Jellema RH (2005) Fusion of mass spectrometry-based metabolomics data. Anal Chem 77(20):6729–6736.  https://doi.org/10.1021/ac051080y CrossRefPubMedGoogle Scholar
  28. 28.
    Schiffman C, Petrick L, Perttula K et al (2019) Filtering procedures for untargeted LC-MS metabolomics data. BMC Bioinformatics 20(1):334.  https://doi.org/10.1186/s12859-019-2871-9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hastie T, Tibshirani R, Sherlock G, Eisen M, Brown P, Botstein D (1999) Imputing missing data for gene expression arrays. Available from www.web.stanford.edu/~hastie/Papers/missing.pdf. Accessed 10 October 2019
  30. 30.
    Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896–902.  https://doi.org/10.1038/nbt.2931 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Conwell LS, Trost SG, Brown WJ, Batch JA (2004) Indexes of insulin resistance and secretion in obese children and adolescents: a validation study. Diabetes Care 27(2):314–319.  https://doi.org/10.2337/diacare.27.2.314 CrossRefPubMedGoogle Scholar
  32. 32.
    George L, Bacha F, Lee S, Tfayli H, Andreatta E, Arslanian S (2011) Surrogate estimates of insulin sensitivity in obese youth along the spectrum of glucose tolerance from normal to prediabetes to diabetes. J Clin Endocrinol Metab 96(7):2136–2145.  https://doi.org/10.1210/jc.2010-2813 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gungor N, Saad R, Janosky J, Arslanian S (2004) Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Pediatr 144(1):47–55.  https://doi.org/10.1016/j.jpeds.2003.09.045 CrossRefPubMedGoogle Scholar
  34. 34.
    Yajnik CS, Katre PA, Joshi SM et al (2015) Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children’s Study. Diabetologia 58(7):1626–1636.  https://doi.org/10.1007/s00125-015-3602-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cancello R, Tounian A, Poitou C, Clement K (2004) Adiposity signals, genetic and body weight regulation in humans. Diabetes Metab 30(3):215–227CrossRefGoogle Scholar
  36. 36.
    Fleisch AF, Agarwal N, Roberts MD et al (2007) Influence of serum leptin on weight and body fat growth in children at high risk for adult obesity. J Clin Endocrinol Metab 92(3):948–954.  https://doi.org/10.1210/jc.2006-1390 CrossRefPubMedGoogle Scholar
  37. 37.
    Freedman DS, Sherry B (2009) The validity of BMI as an indicator of body fatness and risk among children. Pediatrics 124(Suppl 1):S23–S34.  https://doi.org/10.1542/peds.2008-3586E CrossRefPubMedGoogle Scholar
  38. 38.
    Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW (2013) Correlations among adiposity measures in school-aged children. BMC Pediatr 13:99.  https://doi.org/10.1186/1471-2431-13-99 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wells JCK, Fewtrell MS (2006) Measuring body composition. Arch Dis Child 91(7):612–617.  https://doi.org/10.1136/adc.2005.085522 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Centers for Disease Control and Prevention (2007) National Health and Nutrition Examination Survey (NHANES). Available from wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2007. Accessed 10 October 2019
  41. 41.
    Marshall WA, Tanner JM (1968) Growth and physiological development during adolescence. Annu Rev Med 19:283–300.  https://doi.org/10.1146/annurev.me.19.020168.001435 CrossRefPubMedGoogle Scholar
  42. 42.
    Chavarro JE, Watkins DJ, Afeiche MC et al (2017) Validity of self-assessed sexual maturation against physician assessments and hormone levels. J Pediatr 186:172–178.e3.  https://doi.org/10.1016/j.jpeds.2017.03.050 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Weston AT, Petosa R, Pate RR (1997) Validation of an instrument for measurement of physical activity in youth. Med Sci Sports Exerc 29(1):138–143.  https://doi.org/10.1097/00005768-199701000-00020 CrossRefPubMedGoogle Scholar
  44. 44.
    Cullen KW, Watson K, Zakeri I (2008) Relative reliability and validity of the Block Kids Questionnaire among youth aged 10 to 17 years. J Am Diet Assoc 108(5):862–866.  https://doi.org/10.1016/j.jada.2008.02.015 CrossRefPubMedGoogle Scholar
  45. 45.
    Perng W, Gillman MW, Mantzoros CS, Oken E (2014) A prospective study of maternal prenatal weight and offspring cardiometabolic health in midchildhood. Ann Epidemiol 24(11):793–800.e1.  https://doi.org/10.1016/j.annepidem.2014.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shapiro AL, Schmiege SJ, Brinton JT et al (2015) Testing the fuel-mediated hypothesis: maternal insulin resistance and glucose mediate the association between maternal and neonatal adiposity, the Healthy Start study. Diabetologia 58(5):937–941.  https://doi.org/10.1007/s00125-015-3505-z CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Perng W, Mora-Plazas M, Marin C, Rozek LS, Baylin A, Villamor E (2013) A prospective study of LINE-1DNA methylation and development of adiposity in school-age children. PLoS One 8(4):e62587.  https://doi.org/10.1371/journal.pone.0062587 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Breton CV, Marsit CJ, Faustman E et al (2017) Small-magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: the Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect 125(4):511–526.  https://doi.org/10.1289/ehp595 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Perng WOE, Dabelea D (2019) Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia. 62(10):1779–1788.  https://doi.org/10.1007/s00125-019-4914-1 CrossRefPubMedGoogle Scholar
  50. 50.
    Perng W, Gillman MW, Fleisch AF et al (2014) Metabolomic profiles and childhood obesity. Obesity 22(12):2570–2578.  https://doi.org/10.1002/oby.20901 CrossRefPubMedGoogle Scholar
  51. 51.
    Berglund SK, Garcia-Valdes L, Torres-Espinola FJ et al (2016) Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 16:207.  https://doi.org/10.1186/s12889-016-2809-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    National Center for Biotechnology Information. PubChem Database. CID=9543695. Available from https://pubchem.ncbi.nlm.nih.gov/compound/1-Palmitoyl-2-linoleoyl-sn-glycerol. Accessed 10 October 2019
  53. 53.
    Paton CM, Ntambi JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297(1):E28–E37.  https://doi.org/10.1152/ajpendo.90897.2008 CrossRefPubMedGoogle Scholar
  54. 54.
    Dobrzyn P, Jazurek M, Dobrzyn A (2010) Stearoyl-CoA desaturase and insulin signaling – what is the molecular switch? Biochim Biophys Acta 1797(6–7):1189–1194.  https://doi.org/10.1016/j.bbabio.2010.02.007 CrossRefPubMedGoogle Scholar
  55. 55.
    Rahman SM, Dobrzyn A, Lee SH, Dobrzyn P, Miyazaki M, Ntambi JM (2005) Stearoyl-CoA desaturase 1 deficiency increases insulin signaling and glycogen accumulation in brown adipose tissue. Am J Physiol Endocrinol Metab 288(2):E381–E387.  https://doi.org/10.1152/ajpendo.00314.2004 CrossRefPubMedGoogle Scholar
  56. 56.
    Polewski MA, Burhans MS, Zhao M et al (2015) Plasma diacylglycerol composition is a biomarker of metabolic syndrome onset in rhesus monkeys. J Lipid Res 56(8):1461–1470.  https://doi.org/10.1194/jlr.M057562 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chang W, Hatch GM, Wang Y, Yu F, Wang M (2019) The relationship between phospholipids and insulin resistance: from clinical to experimental studies. J Cell Mol Med 23(2):702–710.  https://doi.org/10.1111/jcmm.13984 CrossRefPubMedGoogle Scholar
  58. 58.
    Nestel P, Clifton P, Noakes M (1994) Effects of increasing dietary palmitoleic acid compared with palmitic and oleic acids on plasma lipids of hypercholesterolemic men. J Lipid Res 35(4):656–662PubMedGoogle Scholar
  59. 59.
    Frigolet ME, Gutierrez-Aguilar R (2017) The role of the novel lipokine palmitoleic acid in health and disease. Adv Nutr 8(1):173s–181s.  https://doi.org/10.3945/an.115.011130 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Siervogel RM, Demerath EW, Schubert C et al (2003) Puberty and body composition. Horm Res 60(Suppl 1):36–45.  https://doi.org/10.1159/000071224 CrossRefPubMedGoogle Scholar
  61. 61.
    Kelsey MM, Zeitler PS (2016) Insulin resistance of puberty. Curr Diab Rep 16(7):64.  https://doi.org/10.1007/s11892-016-0751-5 CrossRefPubMedGoogle Scholar
  62. 62.
    Hockett CW, Bedrick EJ, Zeitler P, Crume TL, Daniels S, Dabelea D (2019) Exposure to diabetes in utero is associated with earlier pubertal timing and faster pubertal growth in the offspring: the EPOCH study. J Pediatr 206:105–112.  https://doi.org/10.1016/j.jpeds.2018.10.053 CrossRefPubMedGoogle Scholar
  63. 63.
    Kubo A, Ferrara A, Laurent CA et al (2016) Associations between maternal pregravid obesity and gestational diabetes and the timing of pubarche in daughters. Am J Epidemiol 184(1):7–14.  https://doi.org/10.1093/aje/kww006 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lauridsen LLB, Arendt LH, Ernst A et al (2018) Maternal diabetes mellitus and timing of pubertal development in daughters and sons: a nationwide cohort study. Fertil Steril 110(1):35–44.  https://doi.org/10.1016/j.fertnstert.2018.03.014 CrossRefPubMedGoogle Scholar
  65. 65.
    Lawn RB, Lawlor DA, Fraser A (2018) Associations between maternal prepregnancy body mass index and gestational weight gain and daughter’s age at menarche: the Avon Longitudinal Study of Parents and Children. Am J Epidemiol 187(4):677–686.  https://doi.org/10.1093/aje/kwx308 CrossRefPubMedGoogle Scholar
  66. 66.
    Grunnet LG, Hansen S, Hjort L et al (2017) Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish National Birth Cohort. Diabetes Care 40(12):1746–1755.  https://doi.org/10.2337/dc17-0514 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Poston L (2010) Developmental programming and diabetes – the human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab 24(4):541–552.  https://doi.org/10.1016/j.beem.2010.05.007 CrossRefPubMedGoogle Scholar
  68. 68.
    Michaliszyn SF, Sjaarda LA, Mihalik SJ et al (2012) Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth. J Clin Endocrinol Metab 97(11):E2119–E2124.  https://doi.org/10.1210/jc.2012-2170 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Perng W, Oken E, Roumeliotaki T et al (2016) Leptin, acylcarnitine metabolites and development of adiposity in the Rhea mother–child cohort in Crete, Greece. Obes Sci Pract 2(4):471–476.  https://doi.org/10.1002/osp4.65 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Perng W, Hector EC, Song PXK et al (2017) Metabolomic determinants of metabolic risk in Mexican adolescents. Obesity 25(9):1594–1602.  https://doi.org/10.1002/oby.21926 CrossRefPubMedGoogle Scholar
  71. 71.
    Mihalik SJ, Michaliszyn SF, de las Heras J et al (2012) Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: evidence for enhanced mitochondrial oxidation. Diabetes Care 35(3):605–611.  https://doi.org/10.2337/dc11-1577 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Butte NF, Liu Y, Zakeri IF et al (2015) Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr 102(2):256–267.  https://doi.org/10.3945/ajcn.115.111872 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Department of Epidemiology, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraUSA
  3. 3.Department of Nutritional Sciences, School of Public HealthUniversity of MichiganAnn ArborUSA
  4. 4.Department of Biostatistics and Informatics, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraUSA
  5. 5.Metabolon, Inc.Chapel HillUSA
  6. 6.Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraUSA

Personalised recommendations