Advertisement

Diabetologia

pp 1–13 | Cite as

Pleiotrophin deletion alters glucose homeostasis, energy metabolism and brown fat thermogenic function in mice

  • Julio Sevillano
  • María Gracia Sánchez-Alonso
  • Begoña Zapatería
  • María Calderón
  • Martín Alcalá
  • María Limones
  • Jimena Pita
  • Esther Gramage
  • Marta Vicente-Rodríguez
  • Daniel Horrillo
  • Gema Medina-Gómez
  • María Jesús Obregón
  • Marta Viana
  • Ismael Valladolid-Acebes
  • Gonzalo Herradón
  • María Pilar Ramos-Álvarez
Article

Abstract

Aims/hypothesis

Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis.

Methods

To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months). Metabolic cages were used to investigate the respiratory exchange ratio and energy expenditure, at both 24°C and 30°C. Undifferentiated immortalised mouse brown adipocytes (mBAs) were treated with 0.1 μg/ml pleiotrophin until day 6 of differentiation, and markers of mBA differentiation were analysed by quantitative real-time PCR (qPCR).

Results

Ptn deletion was associated with a reduction in total body fat (20.2% in Ptn+/+ vs 13.9% in Ptn−/− mice) and an enhanced lipolytic response to isoprenaline in isolated adipocytes from 15-month-old mice (189% in Ptn+/+ vs 273% in Ptn−/− mice). We found that Ptn−/− mice exhibited a significantly lower QUICKI value and an altered lipid profile; plasma triacylglycerols and NEFA did not increase with age, as happens in Ptn+/+ mice. Furthermore, the contribution of cold-induced thermogenesis to energy expenditure was greater in Ptn−/− than Ptn+/+ mice (42.6% and 33.6%, respectively). Body temperature and the activity and expression of deiodinase, T3 and mitochondrial uncoupling protein-1 in the brown adipose tissue of Ptn−/− mice were higher than in wild-type controls. Finally, supplementing brown pre-adipocytes with pleiotrophin decreased the expression of the brown adipocyte markers Cidea (20% reduction), Prdm16 (21% reduction), and Pgc1-α (also known as Ppargc1a, 11% reduction).

Conclusions/interpretation

Our results reveal for the first time that pleiotrophin is a key player in preserving insulin sensitivity, driving the dynamics of adipose tissue lipid turnover and plasticity, and regulating energy metabolism and thermogenesis. These findings open therapeutic avenues for the treatment of metabolic disorders by targeting pleiotrophin in the crosstalk between white and brown adipose tissue.

Keywords

Adipose tissue Glucose homeostasis Insulin resistance Metabolism Pleiotrophin Thermogenesis 

Abbreviations

BAT

Brown adipose tissue

DIO2

Deiodinase 2

EC50

Half-maximal effective agonist concentration

EE

Energy expenditure

Emax

Maximum effect

GTT

Glucose tolerance test

mBA

Mouse brown adipocyte

Imax

Maximum inhibitory effect

PPAR

Peroxisome proliferator-activated receptor

PTN

Pleiotrophin

qPCR

Quantitative real-time PCR

RER

Respiratory exchange ratio

rPTN

Recombinant pleiotrophin

UCP-1

Uncoupling protein-1

\( \dot{V}{\mathrm{CO}}_2 \)

Carbon dioxide production

\( \dot{V}{\mathrm{O}}_2 \)

Oxygen consumption

Notes

Acknowledgements

We thank our colleagues in the Animal Facility of the Universidad CEU San Pablo. The immortalised mBAs were kindly supplied by A. M. Valverde (Alberto Sols Biomedical Research Institute [IIBm; CSIC/UAM], Madrid, Spain).

Contribution statement

JS, GM-G, MJO and IV-A performed acquisition, analysis and interpretation of the data, and drafted the article. MGS-A, MC, MA, DH, BZ, ML, JP, EG, MV-R and MV were involved in acquisition, analysis and interpretation of the data. GH and MV analysed and interpreted the data and drafted the manuscript. MPR-A initiated and designed the study, performed analysis and interpretation of the data, and contributed to drafting the manuscript. All authors revised and approved the final version of the manuscript. MPR-A is the guarantor of this work.

Funding

This work was supported by the Spanish Ministry of Economy and Competitiveness (SAF2014-56671-R, SAF2012-32491, SAF2010-19603, BFU2013-47384-R and BFU2016-78951-R) and Community of Madrid (S2010/BMD-2423; S2017/BMD-3864).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

References

  1. 1.
    Bohlen P, Kovesdi I (1991) HBNF and MK, members of a novel gene family of heparin-binding proteins with potential roles in embryogenesis and brain function. Prog in Growth Factor Res 3:143–157.  https://doi.org/10.1016/S0955-2235(05)80005-5 CrossRefGoogle Scholar
  2. 2.
    Deuel TF, Zhang N, Yeh HJ, Silos-Santiago I, Wang ZY (2002) Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway. Arch Biochem Biophys 397:162–171.  https://doi.org/10.1006/abbi.2001.2705 CrossRefPubMedGoogle Scholar
  3. 3.
    Azizan A, Gaw JU, Govindraj P, Tapp H, Neame PJ (2000) Chondromodulin I and pleiotrophin gene expression in bovine cartilage and epiphysis. Matrix Biol 19:521–531.  https://doi.org/10.1016/S0945-053X(00)00110-4 CrossRefGoogle Scholar
  4. 4.
    Hienola A, Pekkanen M, Raulo E, Vanttola P, Rauvala H (2004) HB-GAM inhibits proliferation and enhances differentiation of neural stem cells. Mol Cell Neurosci 26:75–88.  https://doi.org/10.1016/j.mcn.2004.01.018 CrossRefPubMedGoogle Scholar
  5. 5.
    Mitsiadis TA, Salmivirta M, Muramatsu T et al (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121:37–51Google Scholar
  6. 6.
    Sakurai H, Bush KT, Nigam SK (2001) Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development 128:3283–3293Google Scholar
  7. 7.
    Weng T, Liu L (2010) The role of pleiotrophin and beta-catenin in fetal lung development. Respir Res 11:80.  https://doi.org/10.1186/1465-9921-11-80 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Imai S, Kaksonen M, Raulo E et al (1998) Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J Cell Biol 143:1113–1128.  https://doi.org/10.1083/jcb.143.4.1113 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vanderwinden JM, Mailleux P, Schiffmann SN, Vanderhaeghen JJ (1992) Cellular distribution of the new growth factor pleiotrophin (HB-GAM) mRNA in developing and adult rat tissues. Anat Embryol 186:387–406CrossRefGoogle Scholar
  10. 10.
    Schulte AM, Wellstein A (1997) Pleiotrophin and related molecules. In: Bicknell R, Lewis CE, Ferrara N (eds) Tumour angiogenesis. Oxford University Press, Oxford, pp 273–289Google Scholar
  11. 11.
    Li G, Bunn JR, Mushipe MT, He Q, Chen X (2005) Effects of pleiotrophin (PTN) over-expression on mouse long bone development, fracture healing and bone repair. Calcif Tissue Int 76:299–306.  https://doi.org/10.1007/s00223-004-0145-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Petersen W, Wildemann B, Pufe T, Raschke M, Schmidmaier G (2004) The angiogenic peptide pleiotrophin (PTN/HB-GAM) is expressed in fracture healing: an immunohistochemical study in rats. Arch Orthop Trauma Surg 124:603–607.  https://doi.org/10.1007/s00402-003-0582-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Kaspiris A, Mikelis C, Heroult M et al (2013) Expression of the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in the serum, cartilage and subchondral bone of patients with osteoarthritis. Joint, bone, spine 80:407–413.  https://doi.org/10.1016/j.jbspin.2012.10.024 CrossRefGoogle Scholar
  14. 14.
    Papadimitriou E, Mikelis C, Lampropoulou E et al (2009) Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw 20:180–190.  https://doi.org/10.1684/ecn.2009.0172 CrossRefPubMedGoogle Scholar
  15. 15.
    Yi C, Xie WD, Li F et al (2011) MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett 585:3303–3309.  https://doi.org/10.1016/j.febslet.2011.09.015 CrossRefPubMedGoogle Scholar
  16. 16.
    Gu D, Yu B, Zhao C et al (2007) The effect of pleiotrophin signaling on adipogenesis. FEBS Lett 581:382–388.  https://doi.org/10.1016/j.febslet.2006.12.043 CrossRefPubMedGoogle Scholar
  17. 17.
    Wong JC, Krueger KC, Costa MJ et al (2016) A glucocorticoid- and diet-responsive pathway toggles adipocyte precursor cell activity in vivo. Sci Signal 9:ra103.  https://doi.org/10.1126/scisignal.aag0487 CrossRefPubMedGoogle Scholar
  18. 18.
    Amet LE, Lauri SE, Hienola A et al (2001) Enhanced hippocampal long-term potentiation in mice lacking heparin-binding growth-associated molecule. Mol Cell Neurosci 17:1014–1024.  https://doi.org/10.1006/mcne.2001.0998 CrossRefPubMedGoogle Scholar
  19. 19.
    Herradon G, Ezquerra L, Nguyen T et al (2004) Pleiotrophin is an important regulator of the renin-angiotensin system in mouse aorta. Biochem Biophys Res Commun 324:1041–1047.  https://doi.org/10.1016/j.bbrc.2004.09.161 CrossRefPubMedGoogle Scholar
  20. 20.
    Cacho J, Sevillano J, de Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Phys Endocrinol Metab 295:E1269–E1276.  https://doi.org/10.1152/ajpendo.90207.2008 CrossRefGoogle Scholar
  21. 21.
    Ramos MP, Crespo-Solans MD, del Campo S, Cacho J, Herrera E (2003) Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness. Am J Phys Endocrinol Metab 285:E318–E328.  https://doi.org/10.1152/ajpendo.00456.2002 CrossRefGoogle Scholar
  22. 22.
    Abreu-Vieira G, Xiao C, Gavrilova O, Reitman ML (2015) Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metab 4:461–470.  https://doi.org/10.1016/j.molmet.2015.03.001 CrossRefGoogle Scholar
  23. 23.
    Morreale de Escobar G, Pastor R, Obregon MJ, Escobar del Rey F (1985) Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function. Endocrinology 117:1890–1900.  https://doi.org/10.1210/endo-117-5-1890 CrossRefPubMedGoogle Scholar
  24. 24.
    Obregon MJ, Ruiz de Ona C, Hernandez A, Calvo R, Escobar del Rey F, Morreale de Escobar G (1989) Thyroid hormones and 5′-deiodinase in rat brown adipose tissue during fetal life. Am J Phys 257:E625–E631Google Scholar
  25. 25.
    Valverde AM, Mur C, Brownlee M, Benito M (2004) Susceptibility to apoptosis in insulin-like growth factor-I receptor-deficient brown adipocytes. Mol Biol Cell 15:5101–5117.  https://doi.org/10.1091/mbc.e03-11-0853 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Calderon-Dominguez M, Sebastian D, Fucho R et al (2016) Carnitine palmitoyltransferase 1 increases lipolysis, UCP1 protein expression and mitochondrial activity in brown adipocytes. PLoS One 11:e0159399CrossRefGoogle Scholar
  27. 27.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Phys Endocrinol Metab 280:E745–E751.  https://doi.org/10.1152/ajpendo.2001.280.5.E745 CrossRefGoogle Scholar
  28. 28.
    Ruan H, Lodish HF (2003) Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 14:447–455.  https://doi.org/10.1016/S1359-6101(03)00052-2 CrossRefPubMedGoogle Scholar
  29. 29.
    Janani C, Ranjitha Kumari BD (2015) PPAR gamma gene—a review. Diabetes Metab Syndr 9:46–50.  https://doi.org/10.1016/j.dsx.2014.09.015 CrossRefGoogle Scholar
  30. 30.
    Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγcoactivator-1 (PGC1). Public Health Nutr 10:1132–1137.  https://doi.org/10.1017/S1368980007000614 CrossRefPubMedGoogle Scholar
  31. 31.
    Medina-Gomez G, Gray SL, Yetukuri L et al (2007) PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 3:e64CrossRefGoogle Scholar
  32. 32.
    Tan CK, Leuenberger N, Tan MJ et al (2011) Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60:464–476.  https://doi.org/10.2337/db10-0801 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Masaki T, Yoshimatsu H, Kakuma T et al (1999) Induction of rat uncoupling protein-2 gene treated with tumour necrosis factor alpha in vivo. Eur J Clin Investig 29:76–82.  https://doi.org/10.1046/j.1365-2362.1999.00403.x CrossRefGoogle Scholar
  34. 34.
    Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH (1994) Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A 91:10878–10882.  https://doi.org/10.1073/pnas.91.23.10878 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Del Prato S, Enzi G, Vigili de Kreutzenberg S et al (1990) Insulin regulation of glucose and lipid metabolism in massive obesity. Diabetologia 33:228–236.  https://doi.org/10.1007/BF00404801 CrossRefPubMedGoogle Scholar
  36. 36.
    Speakman JR (2013) Measuring energy metabolism in the mouse –- theoretical, practical, and analytical considerations. Front Physiol 4:34CrossRefGoogle Scholar
  37. 37.
    Obregon MJ, Pitamber R, Jacobsson A, Nedergaard J, Cannon B (1987) Euthyroid status is essential for the perinatal increase in thermogenin mRNA in brown adipose tissue of rat pups. Biochem Biophys Res Commun 148:9–14.  https://doi.org/10.1016/0006-291X(87)91069-2 CrossRefPubMedGoogle Scholar
  38. 38.
    Bianco AC, Silva JE (1988) Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am J Phys 255:E496–E503Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Julio Sevillano
    • 1
  • María Gracia Sánchez-Alonso
    • 1
  • Begoña Zapatería
    • 1
  • María Calderón
    • 1
  • Martín Alcalá
    • 1
  • María Limones
    • 1
  • Jimena Pita
    • 1
  • Esther Gramage
    • 2
  • Marta Vicente-Rodríguez
    • 2
  • Daniel Horrillo
    • 3
  • Gema Medina-Gómez
    • 3
  • María Jesús Obregón
    • 4
  • Marta Viana
    • 1
  • Ismael Valladolid-Acebes
    • 5
  • Gonzalo Herradón
    • 2
  • María Pilar Ramos-Álvarez
    • 1
  1. 1.Department of Chemistry and Biochemistry, Facultad de FarmaciaUniversidad CEU San PabloMadridSpain
  2. 2.Department of Pharmaceutical and Health Sciences, Facultad de FarmaciaUniversidad CEU San PabloMadridSpain
  3. 3.Department of Basic Sciences of HealthUniversidad Rey Juan CarlosAlcorcónSpain
  4. 4.Department of Endocrine and Nervous System Pathophysiology, Instituto de Investigaciones Biomédicas ‘Alberto Sols’Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM)MadridSpain
  5. 5.The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden

Personalised recommendations