, Volume 61, Issue 9, pp 1913–1917 | Cite as

The chicken or the egg? Does glycaemic control predict cognitive function or the other way around?

  • Ithamar Ganmore
  • Michal Schnaider BeeriEmail author


The association between type 2 diabetes and cognitive dysfunction is well established. Prevention of the development of type 2 diabetes and its complications, as well as cognitive dysfunction and dementia, are leading goals in these fields. Deciphering the causality direction of the interplay between type 2 diabetes and cognitive dysfunction, and understanding the timeline of disease progression, are crucial for developing efficient prevention strategies. The prevailing perception is that type 2 diabetes leads to cognitive dysfunction and dementia. There is substantial evidence showing that accelerated cognitive decline in type 2 diabetes starts in midlife (mean age 40–60 years) and that it may even begin at the prediabetes stage. However, in this issue of Diabetologia, Altschul et al (doi: show evidence for the reverse causality hypothesis, i.e. that lower cognitive function precedes poor glycaemic control. They found that cognitive function at early adolescence (age 11 years) predicts both HbA1c levels and cognitive function at age 70 years. Moreover, they found that lower cognitive function at age 70 is associated with an increase in HbA1c from age 70 to 79 years. Based on these findings, future studies should explore whether developing prevention strategies that target young adolescents with lower cognitive function will result in prevention of type 2 diabetes, breaking the vicious cycle of type 2 diabetes and cognitive dysfunction.


Adolescence Cognitive decline Cognitive function Dementia Diabetes HbA1c Prevention Type 2 diabetes 



Lothian Birth Cohort of 1936


Mild cognitive impairment


Contribution statement

Both authors were responsible for drafting the article and revising it critically for important intellectual content. Both authors approved the version to be published.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.


  1. 1.
    Zimmet PZ (2017) Diabetes and its drivers: the largest epidemic in human history? Clin Diabetes Endocrinol 3:1CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Larson EB, Yaffe K, Langa KM (2013) New insights into the dementia epidemic. N Engl J Med 369:2275–2277CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ganmore I, Beeri MS (2018) Magnitude and trajectories of cognitive dysfunction in type 2 diabetes mellitus. In: Srikanth V, Arvanitakis Z (eds) Type 2 diabetes and dementia. Elsevier, New York, pp 29–47CrossRefGoogle Scholar
  4. 4.
    Biessels GJ, Strachan MW, Visseren FL, Kappelle LJ, Whitmer RA (2014) Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol 2:246–255CrossRefPubMedGoogle Scholar
  5. 5.
    Gonzalez-Bulnes A, Astiz S, Ovilo C, Garcia-Contreras C, Vazquez-Gomez M (2016) Nature and nurture in the early-life origins of metabolic syndrome. Curr Pharm Biotechnol 17:573–586CrossRefPubMedGoogle Scholar
  6. 6.
    Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10:819–828CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Altschul DM, Starr JM, Deary IJ (2018) Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia.
  8. 8.
    Kohnert KD, Heinke P, Vogt L, Salzsieder E (2015) Utility of different glycemic control metrics for optimizing management of diabetes. World J Diabetes 6:17–29CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Leong A, Daya N, Porneala B et al (2018) Prediction of type 2 diabetes by hemoglobin a1c in two community-based cohorts. Diabetes Care 41:60–68CrossRefPubMedGoogle Scholar
  10. 10.
    Schnaider Beeri M, Goldbourt U, Silverman JM et al (2004) Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology 63:1902–1907CrossRefPubMedGoogle Scholar
  11. 11.
    Rawlings AM, Sharrett AR, Schneider AL et al (2014) Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med 161:785–793CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ekblad LL, Rinne JO, Puukka P et al (2017) Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care 40:751–758CrossRefPubMedGoogle Scholar
  13. 13.
    Lutski M, Weinstein G, Goldbourt U, Tanne D (2017) Insulin resistance and future cognitive performance and cognitive decline in elderly patients with cardiovascular disease. J Alzheimers Dis 57:633–643CrossRefPubMedGoogle Scholar
  14. 14.
    Crane PK, Walker R, Hubbard RA et al (2013) Glucose levels and risk of dementia. N Engl J Med 369:540–548CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ravona-Springer R, Moshier E, Schmeidler J et al (2012) Changes in glycemic control are associated with changes in cognition in non-diabetic elderly. J Alzheimers Dis 30:299–309CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ravona-Springer R, Heymann A, Schmeidler J et al (2014) Trajectories in glycemic control over time are associated with cognitive performance in elderly subjects with type 2 diabetes. PLoS One 9:e97384CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rawlings AM, Sharrett AR, Mosley TH, Ballew SH, Deal JA, Selvin E (2017) Glucose peaks and the risk of dementia and 20-year cognitive decline. Diabetes Care 40:879–886CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yaffe K, Blackwell T, Whitmer RA, Krueger K, Barrett Connor E (2006) Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging 10:293–295PubMedGoogle Scholar
  19. 19.
    Scottish Diabetes Survey Monitoring Group (2017) Scottish Diabetes Survey 2016. Available from Accessed 16 May 2018
  20. 20.
    Centers for Disease Control and Prevention (2017) National diabetes statistics report, 2017. Available from Accessed 16 May 2018
  21. 21.
    Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61:661–666CrossRefPubMedGoogle Scholar
  22. 22.
    Bangen KJ, Gu Y, Gross AL et al (2015) Relationship between type 2 diabetes mellitus and cognitive change in a multiethnic elderly cohort. J Am Geriatr Soc 63:1075–1083CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Maggi S, Limongi F, Noale M et al (2009) Diabetes as a risk factor for cognitive decline in older patients. Dement Geriatr Cogn Disord 27:24–33CrossRefPubMedGoogle Scholar
  24. 24.
    Rajan KB, Arvanitakis Z, Lynch EB et al (2016) Cognitive decline following incident and preexisting diabetes mellitus in a population sample. Neurology 87:1681–1687CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gregg EW, Yaffe K, Cauley JA et al (2000) Is diabetes associated with cognitive impairment and cognitive decline among older women? Arch Intern Med 160:174–180CrossRefPubMedGoogle Scholar
  26. 26.
    Mayeda ER, Haan MN, Yaffe K, Kanaya AM, Neuhaus J (2015) Does type 2 diabetes increase rate of cognitive decline in older Mexican Americans? Alzheimer Dis Assoc Disord 29:206–212CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yaffe K, Falvey C, Hamilton N et al (2012) Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol 69:1170–1175CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Moran C, Phan TG, Chen J et al (2013) Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36:4036–4042CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mottus R, Luciano M, Sarr JM, McCarthy MI, Deary IJ (2015) Childhood cognitive ability moderates later-life manifestation of type 2 diabetes genetic risk. Health Psychol 34:915–919CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mottus R, Luciano M, Starr JM, Deary IJ (2013) Diabetes and life-long cognitive ability. J Psychosom Res 75:275–278CrossRefPubMedGoogle Scholar
  31. 31.
    Twig G, Gluzman I, Tirosh A et al (2014) Cognitive function and the risk for diabetes among young men. Diabetes Care 37:2982–2988CrossRefPubMedGoogle Scholar
  32. 32.
    Cukierman-Yaffe T, Kasher-Meron M, Fruchter E et al (2015) Cognitive performance at late adolescence and the risk for impaired fasting glucose among young adults. J Clin Endocrinol Metab 100:4409–4416CrossRefPubMedGoogle Scholar
  33. 33.
    Deary IJ, Weiss A, Batty GD (2010) Intelligence and personality as predictors of illness and death: how researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychol Sci Public Interest 11:53–79CrossRefPubMedGoogle Scholar
  34. 34.
    Hasstedt SJ, Hanis CL, Das SK, Elbein SC (2011) Pleiotropy of type 2 diabetes with obesity. J Hum Genet 56:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    American Diabetes Association (2018) Older adults: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S119–S125CrossRefGoogle Scholar
  36. 36.
    Punthakee Z, Miller ME, Launer LJ et al (2012) Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes Care 35:787–793CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    American Diabetes Association (2018) Glycemic targets: standards of medical care in diabetes-2018. Diabetes Care 41(Suppl 1):S55–S64CrossRefGoogle Scholar
  38. 38.
    Fonseca VA (2009) Defining and characterizing the progression of type 2 diabetes. Diabetes Care 32(Suppl 2):S151–S156CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Joseph Sagol Neuroscience Center, Sheba Medical CenterRamat GanIsrael
  2. 2.Department of NeurologySheba Medical CenterRamat GanIsrael
  3. 3.Sackler School of MedicineTel-Aviv UniversityTel-AvivIsrael
  4. 4.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations