, Volume 61, Issue 2, pp 433–444 | Cite as

α-linolenic acid supplementation prevents exercise-induced improvements in white adipose tissue mitochondrial bioenergetics and whole-body glucose homeostasis in obese Zucker rats

  • Cynthia M.F. Monaco
  • Ross Proudfoot
  • Paula M. Miotto
  • Eric A.F. Herbst
  • Rebecca E.K. MacPherson
  • Graham P. Holloway



While the underlying mechanisms in the development of insulin resistance remain inconclusive, metabolic dysfunction in both white adipose tissue (WAT) and skeletal muscle have been implicated in the process. Therefore, we investigated the independent and combined effects of α-linolenic acid (ALA) supplementation and exercise training on whole-body glucose homeostasis and mitochondrial bioenergetics within the WAT and skeletal muscle of obese Zucker rats.


We randomly assigned obese Zucker rats to receive a control diet alone or supplemented with ALA and to remain sedentary or undergo exercise training for 4 weeks (CON-Sed, ALA-Sed, CON-Ex and ALA-Ex groups). Whole-body glucose tolerance was determined in response to a glucose load. Mitochondrial content and bioenergetics were examined in skeletal muscle and epididymal WAT (eWAT). Insulin sensitivity and cellular stress were assessed by western blot.


Exercise training independently improved whole-body glucose tolerance as well as insulin-induced signalling in muscle and WAT. However, the consumption of ALA during exercise training prevented exercise-mediated improvements in whole-body glucose tolerance. ALA consumption did not influence exercise-induced adaptations within skeletal muscle, insulin sensitivity and mitochondrial bioenergetics. In contrast, within eWAT, ALA supplementation attenuated insulin signalling, decreased mitochondrial respiration and increased the fraction of electron leak to reactive oxygen species (ROS).


These findings indicate that, in an obese rodent model, consumption of ALA attenuates the favourable adaptive changes of exercise training within eWAT, which consequently impacts whole-body glucose homeostasis. The direct translation to humans, however, remains to be determined.


Exercise Glucose homeostasis Insulin signalling Mitochondria Obesity PUFA Respiration ROS Skeletal muscle WAT 



α-linolenic acid


Adenosine nucleotide translocase


Control (diet)


Cytochrome c oxidase IV


Docosahexaenoic acid




Eicosapentaenoic acid


Extracellular signalling-related kinase


Epididymal white adipose tissue


Exercise (group)




c-Jun N-terminal kinase


Monocyte chemotactic protein 1


Mitochondrial DNA


Mitochondrial oxidative phosphorylation




Pyruvate dehydrogenase subunit E1-alpha


Permeabilised muscle fibres


Polyunsaturated fatty acid


Reactive oxygen species


Sedentary (group)


White adipose tissue



We would like to thank D.C. Wright (Human Health & Nutritional Sciences, University of Guelph, Canada) for generously providing some of the antibodies used in this study.

Data availability

All relevant data are included in the article and/or the ESM files.


This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC, GPH, 03656). Infrastructure was purchased with assistance from the Canadian Foundation for Innovation/Ontario Research Fund (GPH, 25136). CMFM, PMM and EAFH were recipients of NSERC graduate scholarships.

Duality of interest

The authors declare that there is no duality of interest associated with this article.

Contribution statement

GPH designed the experiments. CMFM and GPH wrote the manuscript. CMFM, RP, PMM, EAFH and REKM performed experiments, and analysed and interpreted data. All authors edited the manuscript. All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All people designated as authors qualify for authorship, and all those who qualify for authorship are listed. CMFM is the guarantor of this work.

Supplementary material

125_2017_4456_MOESM1_ESM.pdf (1.3 mb)
ESM (PDF 1326 kb)


  1. 1.
    Meo SD, Iossa S, Venditti P (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J Endocrinol 233:R15–R42.  https://doi.org/10.1530/JOE-16-0598 CrossRefPubMedGoogle Scholar
  2. 2.
    Cusi K (2010) The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep 10:306–315.  https://doi.org/10.1007/s11892-010-0122-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Ploug T, Stallknecht BM, Pedersen O et al (1990) Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Phys 259:E778–E786Google Scholar
  4. 4.
    Caponi PW, Lehnen AM, Pinto GH et al (2013) Aerobic exercise training induces metabolic benefits in rats with metabolic syndrome independent of dietary changes. Clinics 68:1010–1017.  https://doi.org/10.6061/clinics/2013(07)20 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Flynn MG, McFarlin BK, Markofski MM (2007) The anti-inflammatory actions of exercise training. Am J Lifestyle Med 1:220–235.  https://doi.org/10.1177/1559827607300283 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291.  https://doi.org/10.1146/annurev.ph.38.030176.001421 CrossRefPubMedGoogle Scholar
  7. 7.
    Sutherland LN, Bomhof MR, Capozzi LC et al (2009) Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue. J Physiol 587:1607–1617.  https://doi.org/10.1113/jphysiol.2008.165464 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stallknecht B, Vinten J, Ploug T, Galbo H (1991) Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am J Phys 261:E410–E414Google Scholar
  9. 9.
    Choo H-J, Kim J-H, Kwon O-B et al (2006) Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 49:784–791.  https://doi.org/10.1007/s00125-006-0170-2 CrossRefPubMedGoogle Scholar
  10. 10.
    Wilson-Fritch L, Nicoloro S, Chouinard M et al (2004) Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 114:1281–1289.  https://doi.org/10.1172/JCI21752 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chomentowski P, Coen PM, Radiková Z et al (2010) Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 96:494–503.  https://doi.org/10.1210/jc.2010-0822 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Asterholm IW, Mundy DI, Weng J et al (2012) Altered mitochondrial function and metabolic inflexibility associated with loss of caveolin-1. Cell Metab 15:171–185.  https://doi.org/10.1016/j.cmet.2012.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beaudoin M-S, Snook LA, Arkell AM et al (2013) Resveratrol supplementation improves white adipose tissue function in a depot-specific manner in Zucker diabetic fatty rats. Am J Phys Regul Integr Comp Phys 305:R542–R551.  https://doi.org/10.1152/ajpregu.00200.2013 Google Scholar
  14. 14.
    Benton CR, Holloway GP, Han X-X et al (2010) Increased levels of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1alpha) improve lipid utilisation, insulin signalling and glucose transport in skeletal muscle of lean and insulin-resistant obese Zucker rats. Diabetologia 53:2008–2019.  https://doi.org/10.1007/s00125-010-1773-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Benton CR, Nickerson JG, Lally J et al (2008) Modest PGC-1α overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidation in subsarcolemmal, not intermyofibrillar, mitochondria. J Biol Chem 283:4228–4240.  https://doi.org/10.1074/jbc.M704332200 CrossRefPubMedGoogle Scholar
  16. 16.
    Boden G, Homko C, Mozzoli M et al (2005) Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes 54:880–885CrossRefPubMedGoogle Scholar
  17. 17.
    Rong JX, Qiu Y, Hansen MK et al (2007) Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 56:1751–1760.  https://doi.org/10.2337/db06-1135 CrossRefPubMedGoogle Scholar
  18. 18.
    Storlien LH, Kraegen EW, Chisholm DJ et al (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885–888CrossRefPubMedGoogle Scholar
  19. 19.
    Neschen S, Morino K, Dong J et al (2007) n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 56:1034–1041.  https://doi.org/10.2337/db06-1206 CrossRefPubMedGoogle Scholar
  20. 20.
    Lanza IR, Blachnio-Zabielska A, Johnson ML et al (2013) Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Am J Physiol Endocrinol Metab 304:E1391–E1403.  https://doi.org/10.1152/ajpendo.00584.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother Biomed Pharmacother 56:365–379CrossRefPubMedGoogle Scholar
  22. 22.
    Popp-Snijders C, Schouten JA, Heine RJ et al (1987) Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin-dependent diabetes. Diabetes Res Edinb Scotl 4:141–147Google Scholar
  23. 23.
    Khairallah RJ, Kim J, O’Shea KM et al (2012) Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids. PLoS One 7:e34402.  https://doi.org/10.1371/journal.pone.0034402 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Herbst EAF, Paglialunga S, Gerling C et al (2014) Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J Physiol 592:1341–1352.  https://doi.org/10.1113/jphysiol.2013.267336 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jelenik T, Rossmeisl M, Kuda O et al (2010) AMP-activated protein kinase α2 subunit is required for the preservation of hepatic insulin sensitivity by n-3 polyunsaturated fatty acids. Diabetes 59:2737–2746.  https://doi.org/10.2337/db09-1716 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ruzickova J, Rossmeisl M, Prazak T et al (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177–1185CrossRefPubMedGoogle Scholar
  27. 27.
    Flachs P, Horakova O, Brauner P et al (2005) Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia 48:2365–2375.  https://doi.org/10.1007/s00125-005-1944-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Hensler M, Bardova K, Jilkova ZM et al (2011) The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids Health Dis 10:128.  https://doi.org/10.1186/1476-511X-10-128 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Strobel NA, Peake JM, Matsumoto A et al (2011) Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 43:1017–1024.  https://doi.org/10.1249/MSS.0b013e318203afa3 CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Cabrera M-C, Domenech E, Romagnoli M et al (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87:142–149PubMedGoogle Scholar
  31. 31.
    Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670.  https://doi.org/10.1073/pnas.0903485106 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gliemann L, Schmidt JF, Olesen J et al (2013) Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol 591:5047–5059.  https://doi.org/10.1113/jphysiol.2013.258061 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Scribbans TD, Ma JK, Edgett BA et al (2014) Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans. Appl Physiol Nutr Metab 39:1305–1313.  https://doi.org/10.1139/apnm-2014-0070 CrossRefPubMedGoogle Scholar
  34. 34.
    Yoshino J, Conte C, Fontana L et al (2012) Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 16:658–664.  https://doi.org/10.1016/j.cmet.2012.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Olesen J, Gliemann L, Biensø R et al (2014) Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol 592:1873–1886.  https://doi.org/10.1113/jphysiol.2013.270256 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ringholm S, Olesen J, Pedersen JT et al (2013) Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1α. Exp Gerontol 48:1311–1318.  https://doi.org/10.1016/j.exger.2013.08.012 CrossRefPubMedGoogle Scholar
  37. 37.
    Polley KR, Jenkins N, O’Connor P, McCully K (2016) Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 41:26–32.  https://doi.org/10.1139/apnm-2015-0370 CrossRefGoogle Scholar
  38. 38.
    Robinson LE, Field CJ (1998) Dietary long-chain (n-3) fatty acids facilitate immune cell activation in sedentary, but not exercise-trained rats. J Nutr 128:498–504PubMedGoogle Scholar
  39. 39.
    Matravadia S, Zabielski P, Chabowski A et al (2016) LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition. Am J Phys Regul Integr Comp Phys 310:R619–R630.  https://doi.org/10.1152/ajpregu.00297.2015 Google Scholar
  40. 40.
    Miotto PM, Horbatuk M, Proudfoot R et al (2017) Alpha-linolenic acid supplementation and exercise training reveal independent and additive responses on hepatic lipid accumulation in obese rats. Am J Physiol Endocrinol Metab.  https://doi.org/10.1152/ajpendo.00438.2016
  41. 41.
    Barbeau P-A, Holloway TM, Whitfield J et al (2017) α-linolenic acid and exercise training independently, and additively, decreases blood pressure and prevents diastolic dysfunction in obese Zucker rats. J Physiol.  https://doi.org/10.1113/JP274036
  42. 42.
    Matravadia S, Herbst EAF, Jain SS et al (2014) Both linoleic and α-linolenic acid prevent insulin resistance but have divergent impacts on skeletal muscle mitochondrial bioenergetics in obese Zucker rats. Am J Physiol Endocrinol Metab 307:E102–E114.  https://doi.org/10.1152/ajpendo.00032.2014 CrossRefPubMedGoogle Scholar
  43. 43.
    Perry CGR, Kane DA, Lin C-T et al (2011) Inhibiting myosin-ATPase reveals a dynamic range of mitochondrial respiratory control in skeletal muscle. Biochem J 437:215–222.  https://doi.org/10.1042/BJ20110366 CrossRefPubMedGoogle Scholar
  44. 44.
    Smith BK, Perry CGR, Herbst EAF et al (2013) Submaximal ADP-stimulated respiration is impaired in ZDF rats and recovered by resveratrol. J Physiol 591:6089–6101.  https://doi.org/10.1113/jphysiol.2013.259226 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paglialunga S, Ludzki A, Root-McCaig J, Holloway GP (2015) In adipose tissue, increased mitochondrial emission of reactive oxygen species is important for short-term high-fat diet-induced insulin resistance in mice. Diabetologia 58:1071–1080.  https://doi.org/10.1007/s00125-015-3531-x CrossRefPubMedGoogle Scholar
  46. 46.
    Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581.  https://doi.org/10.1172/JCI37048 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kraunsøe R, Boushel R, Hansen CN et al (2010) Mitochondrial respiration in subcutaneous and visceral adipose tissue from patients with morbid obesity. J Physiol 588:2023–2032.  https://doi.org/10.1113/jphysiol.2009.184754 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McGlory C, Galloway SDR, Hamilton DL et al (2014) Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins Leukot Essent Fat Acids 90:199–206.  https://doi.org/10.1016/j.plefa.2014.03.001 CrossRefGoogle Scholar
  49. 49.
    Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948.  https://doi.org/10.1038/nature04634 CrossRefPubMedGoogle Scholar
  50. 50.
    Brenna JT (2002) Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care 5:127–132CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Cynthia M.F. Monaco
    • 1
  • Ross Proudfoot
    • 1
  • Paula M. Miotto
    • 1
  • Eric A.F. Herbst
    • 1
  • Rebecca E.K. MacPherson
    • 2
  • Graham P. Holloway
    • 1
  1. 1.Department of Human Health and Nutritional SciencesUniversity of GuelphGuelphCanada
  2. 2.Department of Health SciencesBrock UniversitySt CatharinesCanada

Personalised recommendations