Diabetologia

, Volume 60, Issue 7, pp 1207–1217 | Cite as

Brain changes in overweight/obese and normal-weight adults with type 2 diabetes mellitus

  • Sujung Yoon
  • Hanbyul Cho
  • Jungyoon Kim
  • Do-Wan Lee
  • Geon Ha Kim
  • Young Sun Hong
  • Sohyeon Moon
  • Shinwon Park
  • Sunho Lee
  • Suji Lee
  • Sujin Bae
  • Donald C. Simonson
  • In Kyoon Lyoo
Article

Abstract

Aims/hypothesis

Overweight and obesity may significantly worsen glycaemic and metabolic control in type 2 diabetes. However, little is known about the effects of overweight and obesity on the brains of people with type 2 diabetes. Here, we investigate whether the presence of overweight or obesity influences the brain and cognitive functions during early stage type 2 diabetes.

Methods

This study attempted to uncouple the effects of overweight/obesity from those of type 2 diabetes on brain structures and cognition. Overweight/obese participants with type 2 diabetes had more severe and progressive abnormalities in their brain structures and cognition during early stage type 2 diabetes compared with participants with normal weight. Relationships between each of these measures and disease duration were also examined.

Results

Global mean cortical thickness was lower in the overweight/obese type 2 diabetes group than in the normal-weight type 2 diabetes group (z = −2.96, p for group effect = 0.003). A negative correlation was observed between disease duration and global mean white matter integrity (z = 2.42, p for interaction = 0.02) in the overweight/obese type 2 diabetes group, but not in the normal-weight type 2 diabetes group. Overweight/obese individuals with type 2 diabetes showed a decrease in psychomotor speed performance related to disease duration (z = −2.12, p for interaction = 0.03), while normal-weight participants did not.

Conclusions/interpretation

The current study attempted to uncouple the effects of overweight/obesity from those of type 2 diabetes on brain structures and cognition. Overweight/obese participants with type 2 diabetes had more severe and progressive abnormalities in brain structures and cognition during early stage type 2 diabetes compared with normal-weight participants.

Keywords

Cognitive function Grey matter Obesity Overweight Type 2 diabetes mellitus White matter 

Abbreviations

FA

Fractional anisotropy

Hs-CRP

High-sensitivity C-reactive protein

ICV

Intracranial volume

ROI

Region of interest

Supplementary material

125_2017_4266_MOESM1_ESM.pdf (390 kb)
ESM 1(PDF 389 kb)

References

  1. 1.
    Klein JP, Waxman SG (2003) The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurol 2:548–554CrossRefPubMedGoogle Scholar
  2. 2.
    Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5:64–74CrossRefPubMedGoogle Scholar
  3. 3.
    Biessels GJ, Deary IJ, Ryan CM (2008) Cognition and diabetes: a lifespan perspective. Lancet Neurol 7:184–190CrossRefPubMedGoogle Scholar
  4. 4.
    Kloppenborg RP, van den Berg E, Kappelle LJ, Biessels GJ (2008) Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. Eur J Pharmacol 585:97–108CrossRefPubMedGoogle Scholar
  5. 5.
    Strachan MW, Reynolds RM, Marioni RE, Price JF (2011) Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat Rev Endocrinol 7:108–114CrossRefPubMedGoogle Scholar
  6. 6.
    McCrimmon RJ, Ryan CM, Frier BM (2012) Diabetes and cognitive dysfunction. Lancet 379:2291–2299CrossRefPubMedGoogle Scholar
  7. 7.
    Neeland IJ, Turer AT, Ayers CR et al (2012) Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA 308:1150–1159CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Biggs ML, Mukamal KJ, Luchsinger JA et al (2010) Association between adiposity in midlife and older age and risk of diabetes in older adults. JAMA 303:2504–2512CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Serrano Rios M (1998) Relationship between obesity and the increased risk of major complications in non-insulin-dependent diabetes mellitus. Eur J Clin Investig 28:14–17CrossRefGoogle Scholar
  10. 10.
    Isomaa B, Henricsson M, Almgren P, Tuomi T, Taskinen MR, Groop L (2001) The metabolic syndrome influences the risk of chronic complications in patients with type II diabetes. Diabetologia 44:1148–1154CrossRefPubMedGoogle Scholar
  11. 11.
    Brooks SJ, Benedict C, Burgos J et al (2013) Late-life obesity is associated with smaller global and regional gray matter volumes: a voxel-based morphometric study. Int J Obes 37:230–236CrossRefGoogle Scholar
  12. 12.
    Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A (2012) Neuroimaging and obesity: current knowledge and future directions. Obes Rev 13:43–56CrossRefPubMedGoogle Scholar
  13. 13.
    Debette S, Wolf C, Lambert JC et al (2014) Abdominal obesity and lower gray matter volume: a Mendelian randomization study. Neurobiol Aging 35:378–386CrossRefPubMedGoogle Scholar
  14. 14.
    Pedditizi E, Peters R, Beckett N (2016) The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing 45:14–21CrossRefPubMedGoogle Scholar
  15. 15.
    Eckel N, Muhlenbruch K, Meidtner K, Boeing H, Stefan N, Schulze MB (2015) Characterization of metabolically unhealthy normal-weight individuals: risk factors and their associations with type 2 diabetes. Metabolism 64:862–871CrossRefPubMedGoogle Scholar
  16. 16.
    Yaghootkar H, Scott RA, White CC et al (2014) Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes 63:4369–4377CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yoon KH, Lee JH, Kim JW et al (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368:1681–1688CrossRefPubMedGoogle Scholar
  18. 18.
    Bateman RJ, Xiong C, Benzinger TL et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Benzinger TL, Blazey T, Jack CR et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci U S A 110:E4502–E4509CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Expert Panel on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults (US), National Heart, Lung, and Blood Institute, National Institute of Diabetes and Digestive Kidney Diseases (US) (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. National Institutes of Health, National Heart, Lung, and Blood Institute. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2003/. Accessed 8 Oct 2016
  21. 21.
    WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363:157–163CrossRefGoogle Scholar
  22. 22.
    American Diabetes Association (2009) Standards of medical care in diabetes—2009. Diabetes Care 32:S13–S61CrossRefPubMedCentralGoogle Scholar
  23. 23.
    American Diabetes Association (2013) Standards of medical care in diabetes—2013. Diabetes Care 36:S11–S66CrossRefGoogle Scholar
  24. 24.
    Punthakee Z, Miller ME, Launer LJ et al (2012) Poor cognitive function and risk of severe hypoglycemia in type 2 diabetes: post hoc epidemiologic analysis of the ACCORD trial. Diabetes Care 35:787–793CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van den Berg E, Kloppenborg RP, Kessels RP, Kappelle LJ, Biessels GJ (2009) Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Acta 1792:470–481CrossRefPubMedGoogle Scholar
  26. 26.
    Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29:494–511CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wakana S, Caprihan A, Panzenboeck MM et al (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage 36:630–644CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 163:1524–1528CrossRefPubMedGoogle Scholar
  29. 29.
    Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP Jr, Yaffe K (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330:1360CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76:1568–1574CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1:13–21CrossRefPubMedGoogle Scholar
  32. 32.
    McNay EC, Recknagel AK (2011) Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem 96:432–442CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bondy CA, Cheng CM (2004) Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 490:25–31CrossRefPubMedGoogle Scholar
  34. 34.
    Schulingkamp RJ, Pagano TC, Hung D, Raffa RB (2000) Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24:855–872CrossRefPubMedGoogle Scholar
  35. 35.
    Harris MI, Klein R, Welborn TA, Knuiman MW (1992) Onset of NIDDM occurs at least 4–7 yr before clinical diagnosis. Diabetes Care 15:815–819CrossRefPubMedGoogle Scholar
  36. 36.
    Frier BM (2014) Hypoglycaemia in diabetes mellitus: epidemiology and clinical implications. Nat Rev Endocrinol 10:711–722CrossRefPubMedGoogle Scholar
  37. 37.
    Patrone C, Eriksson O, Lindholm D (2014) Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2:256–262CrossRefPubMedGoogle Scholar
  38. 38.
    Jee SH, Sull JW, Park J (2006) Body-mass index and mortality in Korean men and women. N Engl J Med 355:779–787CrossRefPubMedGoogle Scholar
  39. 39.
    Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362:1090–1101CrossRefPubMedGoogle Scholar
  40. 40.
    Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L (2014) The many faces of diabetes: a disease with increasing heterogeneity. Lancet 383:1084–1094CrossRefPubMedGoogle Scholar
  41. 41.
    Ramachandran A, Ma RC, Snehalatha C (2010) Diabetes in Asia. Lancet 375:408–418CrossRefPubMedGoogle Scholar
  42. 42.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419CrossRefPubMedGoogle Scholar
  43. 43.
    Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:1068–1083CrossRefPubMedGoogle Scholar
  44. 44.
    Cleveland WS, Devlin SJ (1988) Locally-weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sujung Yoon
    • 1
    • 2
  • Hanbyul Cho
    • 3
  • Jungyoon Kim
    • 1
    • 2
  • Do-Wan Lee
    • 1
  • Geon Ha Kim
    • 1
  • Young Sun Hong
    • 4
  • Sohyeon Moon
    • 1
    • 5
  • Shinwon Park
    • 1
    • 2
  • Sunho Lee
    • 1
    • 6
  • Suji Lee
    • 1
    • 2
  • Sujin Bae
    • 7
  • Donald C. Simonson
    • 8
  • In Kyoon Lyoo
    • 1
    • 2
    • 5
  1. 1.Ewha Brain InstituteEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of Brain and Cognitive SciencesEwha Womans UniversitySeoulSouth Korea
  3. 3.The Brain InstituteUniversity of UtahSalt Lake CityUSA
  4. 4.Division of Endocrinology & Metabolism, Department of Internal MedicineEwha Womans University School of MedicineSeoulSouth Korea
  5. 5.Graduate School of Pharmaceutical SciencesEwha Womans UniversitySeoulSouth Korea
  6. 6.Interdisciplinary Program in NeurosciencesSeoul National UniversitySeoulSouth Korea
  7. 7.Department of PsychiatryChung Ang University HospitalSeoulSouth Korea
  8. 8.Department of Internal MedicineBrigham and Women’s HospitalBostonUSA

Personalised recommendations