, Volume 58, Issue 1, pp 31–36 | Cite as

SLC30A8 mutations in type 2 diabetes

  • Guy A. RutterEmail author
  • Fabrice Chimienti


SLC30A8 encodes the secretory granule-resident and largely endocrine pancreas-restricted zinc transporter ZnT8. Interest in this gene product was sparked amongst diabetologists in 2007 when the first genome-wide association study for type 2 diabetes identified polymorphisms in SLC30A8 as affecting disease risk. Thus, the common polymorphism rs13266634 was associated with lowered beta cell function and a 14% increase in diabetes abundance per risk (C) allele. This non-synonymous variant encodes a tryptophan-to-arginine switch at position 325 in the protein’s intracellular carboxy-terminal domain, resulting in reduced zinc transport activity and, consequently, decreased intragranular zinc levels. Whereas insulin secretion from isolated islets is most often increased in mice inactivated for Slc30a8, null animals usually show impaired glucose tolerance and lowered circulating insulin. Since Slc30a8 null animals display little, if any, zinc secretion from islets, the lower plasma insulin levels could be explained by increased hepatic clearance as a result of lowered local zinc levels, or less efficient insulin action on target tissues. Despite the emerging consensus on the role of ZnT8 in glucose homeostasis, a recent genetic study in humans has unexpectedly identified loss-of-function SLC30A8 mutants that are associated with protection from diabetes. Here, we attempt to reconcile these apparently contradictory findings, implicating (1) differing degrees of inhibition of ZnT8 activity in carriers of common variants vs rare loss-of-function forms, (2) effects dependent on age or hypoxic beta cell stress. We propose that these variables conspire to affect both the size and the direction of the effect of SLC30A8 risk alleles in man.


Diabetes genetics GWAS Insulin secretion Review SLC30A8 Zinc transport ZnT8 



Genome-wide association study






Prohormone convertase


Single nucleotide polymorphism


Zinc transporter


Zinc importer



We thank Professor Mark McCarthy (University of Oxford, UK) for useful discussion.


GAR thanks the MRC (UK) for Programme grant MR/J0003042/1, the BBSRC (UK) for a Project grant (BB/J015873/1) the Royal Society for a Wolfson Research Merit Award and the Wellcome Trust for a Senior Investigator Award (WT098424AIA). The work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 155005 (IMIDIA), resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (to GAR).

Duality of interest

There is no duality of interest associated with this manuscript.

Contribution statement

Both authors were responsible for the conception and design of the manuscript, drafting the article and revising it critically for important intellectual content. Both authors approved the version to be published.


  1. 1.
    Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8:189–194PubMedCrossRefGoogle Scholar
  3. 3.
    Emdin SO, Dodson GG, Cutfield JM, Cutfield SM (1980) Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B cell. Diabetologia 19:174–182PubMedCrossRefGoogle Scholar
  4. 4.
    Hutton JC, Penn EJ, Peshavaria M (1983) Low-molecular-weight constituents of isolated insulin-secretory vesicles. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 210:297–305PubMedCentralPubMedGoogle Scholar
  5. 5.
    Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6:737–740PubMedCrossRefGoogle Scholar
  6. 6.
    Carroll RJ, Hammer RE, Chan SJ, Swift HH, Rubenstein AH, Steiner DF (1988) A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci U S A 85:8943–8947PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chausmer AB (1998) Zinc, insulin and diabetes. J Am Coll Nutr 17:109–115PubMedCrossRefGoogle Scholar
  8. 8.
    Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRefGoogle Scholar
  9. 9.
    Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337PubMedCrossRefGoogle Scholar
  10. 10.
    Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176PubMedCrossRefGoogle Scholar
  11. 11.
    Gerber PA, Bellomo EA, Hodson DJ et al (2014) Hypoxia lowers SLC30A8/ZnT8 expression and free cytosolic Zn2+ in pancreatic beta cells. Diabetologia 57:1635–1644PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Boesgaard TW, Zilinskaite J, Vanttinen M et al (2008) The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients-the EUGENE2 study. Diabetologia 51:816–820PubMedCrossRefGoogle Scholar
  13. 13.
    Cauchi S, Del GS, Choquet H et al (2010) Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets. Mol Genet Metab 100:77–82PubMedCrossRefGoogle Scholar
  14. 14.
    Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRefGoogle Scholar
  15. 15.
    Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci U S A 106:14872–14877PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A 104:17040–17045PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Wenzlau JM, Moua O, Sarkar SA et al (2008) SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes. Ann N Y Acad Sci 1150:256–259Google Scholar
  20. 20.
    Weijers RN (2010) Three-dimensional structure of beta-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W. Diabetol Metab Syndr 2:33PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Chao Y, Fu D (2004) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180PubMedCrossRefGoogle Scholar
  22. 22.
    Kim I, Kang ES, Yim YS et al (2010) A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. Pharmacogenomics J 11:191–198PubMedCrossRefGoogle Scholar
  23. 23.
    Davidson HW, Wenzlau JM, O’Brien RM (2014) Zinc transporter 8 (ZnT8) and beta cell function. Trends Endocrinol Metab 25:415–424Google Scholar
  24. 24.
    Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J Biol Chem 282:14389–14393PubMedCrossRefGoogle Scholar
  25. 25.
    Hoch E, Lin W, Chai J, Hershfinkel M, Fu D, Sekler I (2012) Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Proc Natl Acad Sci U S A 109:7202–7207PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Pound LD, Sarkar SA, Benninger RK et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Pound LD, Sarkar SA, Ustione A et al (2012) The physiological effects of deleting the mouse slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS One 7:e40972PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell specific ZnT8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668PubMedCrossRefGoogle Scholar
  29. 29.
    Hardy AB, Wijesekara N, Genkin I et al (2012) Effects of high-fat diet feeding on Znt8-null mice: differences between beta-cell and global knockout of Znt8. Am J Physiol Endocrinol Metab 302:E1084–E1096PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:1–2CrossRefGoogle Scholar
  31. 31.
    Quarterman J, Mills CF, Humphries WR (1966) The reduced secretion of, and sensitivity to insulin in zinc-deficient rats. Biochem Biophys Res Commun 25:354–358PubMedCrossRefGoogle Scholar
  32. 32.
    Coulston L, Dandona P (1980) Insulin-like effect of zinc on adipocytes. Diabetes 29:665–667PubMedCrossRefGoogle Scholar
  33. 33.
    Haase H, Maret W (2005) Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals 18:333–338PubMedCrossRefGoogle Scholar
  34. 34.
    Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Kang ES, Kim MS, Kim YS et al (2008) A polymorphism in the zinc transporter gene SLC30A8 confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 57:1043–1047PubMedCrossRefGoogle Scholar
  36. 36.
    Kim BJ, Kim YH, Kim S et al (2000) Zinc as a paracrine effector in pancreatic islet cell death. Diabetes 49:367–372PubMedCrossRefGoogle Scholar
  37. 37.
    Chimienti F, Jourdan E, Favier A, Seve M (2001) Zinc resistance impairs sensitivity to oxidative stress in HeLa cells: protection through metallothioneins expression. Free Radic Biol Med 31:1179–1190PubMedCrossRefGoogle Scholar
  38. 38.
    Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    da Silva Xavier G, Bellomo EA, McGinty JA, French PM, Rutter GA (2013) Animal models of GWAS-identified type 2 diabetes genes. J Diabetes Res 2013:906590PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Kahn SE, Zraika S, Utzschneider KM, Hull RL (2009) The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia 52:1003–1012PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    van Hoek M, Dehghan A, Witteman JC et al (2008) Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57:3122–3128PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Lango H, Palmer CN, Morris AD et al (2008) Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57:3129–3135PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Nature Medicine (2013) Of men, not mice. Nat Med 19:379CrossRefGoogle Scholar
  45. 45.
    da Silva Xavier G, Loder MK, McDonald A et al (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 58:894–905PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    da Silva Xavier G, Mondragon A, Sun G et al (2012) Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2 null mice. Diabetologia 55:2667–2676PubMedCrossRefGoogle Scholar
  47. 47.
    White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A 100:4046–4049PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Tamaki M, Fujitani Y, Uchida T, Hirose T, Kawamori R, Watada H (2009) Downregulation of ZnT8 expression in pancreatic beta-cells of diabetic mice. Islets 1:124–128PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith HospitalImperial College LondonLondonUK
  2. 2.AstraZeneca R&D, Cardiovascular and Metabolic DiseasesMölndalSweden

Personalised recommendations