Advertisement

Diabetologia

, Volume 57, Issue 11, pp 2357–2365 | Cite as

In patients with type 1 diabetes simultaneous pancreas and kidney transplantation preserves long-term kidney graft ultrastructure and function better than transplantation of kidney alone

  • Jørn P. LindahlEmail author
  • Finn P. Reinholt
  • Ivar A. Eide
  • Anders Hartmann
  • Karsten Midtvedt
  • Hallvard Holdaas
  • Linda T. Dorg
  • Trine M. Reine
  • Svein O. Kolset
  • Rune Horneland
  • Ole Øyen
  • Knut Brabrand
  • Trond Jenssen
Article

Abstract

Aims/hypothesis

In patients with type 1 diabetes and end-stage renal disease (ESRD) we aimed to determine whether long-term normoglycaemia, as achieved by successful simultaneous pancreas and kidney (SPK) transplantation, would preserve kidney graft structure and function better than live donor kidney (LDK) transplantation alone.

Methods

Estimated GFR (eGFR) was calculated in SPK (n = 25) and LDK (n = 17) recipients in a stable phase 3 months after transplantation and annually during follow-up. Kidney graft biopsies were obtained at follow-up for measurement of glomerular volume (light microscopy), glomerular basement membrane (GBM) and podocyte foot process widths and mesangial volume fraction (electron microscopy).

Results

SPK and LDK recipients were similar in age and diabetes duration at engraftment. Donor age was higher in the LDK group. Median follow-up time was 10.1 years. Mean HbA1c levels during follow-up were 5.5 ± 0.4% (37 ± 5 mmol/mol) and 8.3 ± 1.5% (68 ± 16 mmol/mol) in the SPK and LDK group, respectively (p < 0.001). Compared with SPK recipients, LDK recipients had wider GBM (369 ± 109 nm vs 281 ± 57 nm; p = 0.008) and increased mesangial volume fraction (median 0.23 [range 0.13–0.59] vs 0.16 [0.10–0.41]; p = 0.007) at follow-up. Absolute eGFR change from baseline was −11 ± 21 and −23 ± 15 ml min−1 1.73 m−2 (p = 0.060), whereas eGFR slope was −1.1 (95% CI −1.7, −0.5) and −2.6 (95% CI −3.1, −2.1) ml min−1 1.73 m−2 per year in the SPK and LDK group, respectively (p = 0.001).

Conclusions/interpretation

In patients with type 1 diabetes and long-term normoglycaemia after successful SPK transplantation, kidney graft ultrastructure and function were better preserved compared with LDK transplantation alone.

Keywords

Diabetic nephropathy Glomerular basement membrane Glomerular filtration rate Glomerular mesangium Kidney transplantation Pancreatic transplantation Type 1 diabetes 

Abbreviations

ACE

Angiotensin-converting enzyme

ARB

Angiotensin receptor blocker

CADI

Chronic allograft damage index

CNI

Calcineurin inhibitor

DCCT

Diabetes Control and Complications Trial

eGFR

Estimated glomerular filtration rate

ESRD

End-stage renal disease

GBM

Glomerular basement membrane

KTA

Kidney transplantation alone

LDK

Live donor kidney

MPA

Maximal profile area

PAK

Pancreas after kidney

SPK

Simultaneous pancreas and kidney

Notes

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

JPL, FPR, AH and TJ designed the study, analysed and interpreted the data and wrote the manuscript. IAE, KM, HH, LTD, TMR, SOK, RH, OØ and KB participated in the design of the study, interpreted the data and edited the manuscript. All authors read, commented on and approved the final version of the manuscript to be published. JPL, AH and TJ are responsible for the integrity of the work as a whole.

References

  1. 1.
    Selby JV, FitzSimmons SC, Newman JM, Katz PP, Sepe S, Showstack J (1990) The natural history and epidemiology of diabetic nephropathy. Implications for prevention and control. JAMA 263:1954–1960PubMedCrossRefGoogle Scholar
  2. 2.
    Dahl-Jørgensen K, Hanssen KF, Kierulf P, Bjoro T, Sandvik L, Aagenaes O (1988) Reduction of urinary albumin excretion after 4 years of continuous subcutaneous insulin infusion in insulin-dependent diabetes mellitus. The Oslo Study. Acta Endocrinol (Copenh) 117:19–25Google Scholar
  3. 3.
    The Diabetes Control and Complications Trial (DCCT) Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986CrossRefGoogle Scholar
  4. 4.
    The Epidemiology of Diabetes Interventions and Complications (EDIC) study (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy. JAMA 290:2159–2167CrossRefGoogle Scholar
  5. 5.
    Østerby R (1974) Early phases in the development of diabetic glomerulopathy. Acta Med Scand Suppl 574:3–82PubMedGoogle Scholar
  6. 6.
    Steffes MW, Ellis EN, Mauer SM (1986) Complications of diabetes mellitus and factors affecting their progression. Clin Chem 32:B54–B61PubMedGoogle Scholar
  7. 7.
    Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74:1143–1155PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Wolfe RA, Ashby VB, Milford EL et al (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341:1725–1730PubMedCrossRefGoogle Scholar
  9. 9.
    Evans RW, Manninen DL, Garrison LP Jr et al (1985) The quality of life of patients with end-stage renal disease. N Engl J Med 312:553–559PubMedCrossRefGoogle Scholar
  10. 10.
    Gruessner AC (2011) 2011 update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud 8:6–16PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sollinger HW, Odorico JS, Becker YT, D’Alessandro AM, Pirsch JD (2009) One thousand simultaneous pancreas-kidney transplants at a single center with 22-year follow-up. Ann Surg 250:618–630PubMedGoogle Scholar
  12. 12.
    Sutherland DE, Gruessner RW, Dunn DL et al (2001) Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann Surg 233:463–501PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lindahl JP, Hartmann A, Horneland R et al (2013) Improved patient survival with simultaneous pancreas and kidney transplantation in recipients with diabetic end-stage renal disease. Diabetologia 56:1364–1371PubMedCrossRefGoogle Scholar
  14. 14.
    Rayhill SC, D’Alessandro AM, Odorico JS et al (2000) Simultaneous pancreas-kidney transplantation and living related donor renal transplantation in patients with diabetes: is there a difference in survival? Ann Surg 231:417–423PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Morath C, Zeier M, Dohler B, Schmidt J, Nawroth PP, Opelz G (2008) Metabolic control improves long-term renal allograft and patient survival in type 1 diabetes. J Am Soc Nephrol 19:1557–1563PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Young BY, Gill J, Huang E et al (2009) Living donor kidney versus simultaneous pancreas-kidney transplant in type I diabetics: an analysis of the OPTN/UNOS database. Clin J Am Soc Nephrol 4:845–852PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Racusen LC, Solez K, Colvin RB et al (1999) The Banff 97 working classification of renal allograft pathology. Kidney Int 55:713–723PubMedCrossRefGoogle Scholar
  18. 18.
    Isoniemi H, Taskinen E, Hayry P (1994) Histological chronic allograft damage index accurately predicts chronic renal allograft rejection. Transplantation 58:1195–1198PubMedCrossRefGoogle Scholar
  19. 19.
    Lane PH, Steffes MW, Mauer SM (1992) Estimation of glomerular volume: a comparison of four methods. Kidney Int 41:1085–1089PubMedCrossRefGoogle Scholar
  20. 20.
    Bolender RP (1978) Correlation of morphometry and stereology with biochemical analysis of cell fractions. Int Rev Cytol 55:247–289PubMedCrossRefGoogle Scholar
  21. 21.
    Weibel ER (1979) Stereological methods. Vol. 1: Practical methods for biological morphometry. Academic, LondonGoogle Scholar
  22. 22.
    Deegens JK, Dijkman HB, Borm GF et al (2008) Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int 74:1568–1576PubMedCrossRefGoogle Scholar
  23. 23.
    Liu XJ, Zhang YM, Wang SX, Liu G (2014) Ultrastructural changes of podocyte foot processes during the remission phase of minimal change disease of human kidney. Nephrology (Carlton) 19:392–397CrossRefGoogle Scholar
  24. 24.
    Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Caramori ML, Basgen JM, Mauer M (2003) Glomerular structure in the normal human kidney: differences between living and cadaver donors. J Am Soc Nephrol 14:1901–1903PubMedCrossRefGoogle Scholar
  26. 26.
    Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M (2007) Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 56:2155–2160PubMedCrossRefGoogle Scholar
  27. 27.
    Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17PubMedCrossRefGoogle Scholar
  28. 28.
    Myers BD, Ross J, Newton L, Luetscher J, Perlroth M (1984) Cyclosporine-associated chronic nephropathy. N Engl J Med 311:699–705PubMedCrossRefGoogle Scholar
  29. 29.
    Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349:2326–2333PubMedCrossRefGoogle Scholar
  30. 30.
    Harris RD, Steffes MW, Bilous RW, Sutherland DE, Mauer SM (1991) Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes. Kidney Int 40:107–114PubMedCrossRefGoogle Scholar
  31. 31.
    Mihatsch MJ, Antonovych T, Bohman SO et al (1994) Cyclosporin A nephropathy: standardization of the evaluation of kidney biopsies. Clin Nephrol 41:23–32PubMedGoogle Scholar
  32. 32.
    Bohman SO, Tydén G, Wilczek H et al (1985) Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 34:306–308PubMedCrossRefGoogle Scholar
  33. 33.
    Wilczek HE, Jaremko G, Tyden G, Groth CG (1995) Evolution of diabetic nephropathy in kidney grafts. Evidence that a simultaneously transplanted pancreas exerts a protective effect. Transplantation 59:51–57PubMedCrossRefGoogle Scholar
  34. 34.
    Nyberg G, Holdaas H, Brekke IB et al (1996) Glomerular ultrastructure in kidneys transplanted simultaneously with a segmental pancreas to patients with type 1 diabetes. Nephrol Dial Transplant 11:1029–1033PubMedCrossRefGoogle Scholar
  35. 35.
    Bilous RW, Mauer SM, Sutherland DE, Najarian JS, Goetz FC, Steffes MW (1989) The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes. N Engl J Med 321:80–85PubMedCrossRefGoogle Scholar
  36. 36.
    Mauer M, Drummond K (2002) The early natural history of nephropathy in type 1 diabetes: I. Study design and baseline characteristics of the study participants. Diabetes 51:1572–1579PubMedCrossRefGoogle Scholar
  37. 37.
    Drummond K, Mauer M (2002) The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes 51:1580–1587PubMedCrossRefGoogle Scholar
  38. 38.
    Mauer SM, Steffes MW, Connett J, Najarian JS, Sutherland DE, Barbosa J (1983) The development of lesions in the glomerular basement membrane and mesangium after transplantation of normal kidneys to diabetic patients. Diabetes 32:948–952PubMedCrossRefGoogle Scholar
  39. 39.
    Østerby R, Nyberg G, Hedman L, Karlberg I, Persson H, Svalander C (1991) Kidney transplantation in type 1 (insulin-dependent) diabetic patients. Early glomerulopathy. Diabetologia 34:668–674PubMedCrossRefGoogle Scholar
  40. 40.
    Hariharan S, Smith RD, Viero R, First MR (1996) Diabetic nephropathy after renal transplantation. Clinical and pathologic features. Transplantation 62:632–635PubMedCrossRefGoogle Scholar
  41. 41.
    Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75PubMedCrossRefGoogle Scholar
  42. 42.
    Caramori ML, Kim Y, Huang C et al (2002) Cellular basis of diabetic nephropathy: 1. Study design and renal structural-functional relationships in patients with long-standing type 1 diabetes. Diabetes 51:506–513PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jørn P. Lindahl
    • 1
    • 2
    Email author
  • Finn P. Reinholt
    • 1
    • 3
  • Ivar A. Eide
    • 2
  • Anders Hartmann
    • 1
    • 2
  • Karsten Midtvedt
    • 2
  • Hallvard Holdaas
    • 2
  • Linda T. Dorg
    • 3
  • Trine M. Reine
    • 4
  • Svein O. Kolset
    • 4
  • Rune Horneland
    • 2
  • Ole Øyen
    • 2
  • Knut Brabrand
    • 5
  • Trond Jenssen
    • 2
    • 6
  1. 1.Institute of Clinical MedicineUniversity of OsloOsloNorway
  2. 2.Department of Transplant MedicineOslo University HospitalOsloNorway
  3. 3.Department of PathologyOslo University HospitalOsloNorway
  4. 4.Institute of Basic Medical SciencesUniversity of OsloOsloNorway
  5. 5.Department of RadiologyOslo University HospitalOsloNorway
  6. 6.Metabolic and Renal Research GroupUiT The Arctic University of NorwayTromsøNorway

Personalised recommendations