Skip to main content
Log in

A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

The CD40–CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies.

Methods

To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice.

Results

We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies.

Conclusions/interpretation

Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40–CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor–ligand interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

EAE:

Experimental autoimmune encephalomyelitis

H&E:

Haematoxylin and eosin

SAR:

Structure–activity relationship

SLE:

Systemic lupus erythematosus

References

  1. Balasa B, Krahl T, Patstone G et al (1997) CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J Immunol 159:4620–4627

    PubMed  CAS  Google Scholar 

  2. Durie FH, Fava RA, Foy TM, Aruffo A, Ledbetter JA, Noelle RJ (1993) Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261:1328–1330

    Article  PubMed  CAS  Google Scholar 

  3. Kobata T, Azuma M, Yagita H, Okumura K (2000) Role of costimulatory molecules in autoimmunity. Rev Immunogenet 2:74–80

    PubMed  CAS  Google Scholar 

  4. Munroe ME, Bishop GA (2007) A costimulatory function for T cell CD40. J Immunol 178:671–682

    Article  PubMed  CAS  Google Scholar 

  5. Quezada SA, Eckert M, Adeyi OA, Schned AR, Noelle RJ, Burns CM (2003) Distinct mechanisms of action of anti-CD154 in early versus late treatment of murine lupus nephritis. Arthritis Rheum 48:2541–2554

    Article  PubMed  CAS  Google Scholar 

  6. Toubi E, Shoenfeld Y (2004) The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37:457–464

    Article  PubMed  CAS  Google Scholar 

  7. Vaitaitis GM, Poulin M, Sanderson RJ, Haskins K, Wagner DH Jr (2003) Cutting edge: CD40-induced expression of recombination activating gene (RAG) 1 and RAG2: a mechanism for the generation of autoaggressive T cells in the periphery. J Immunol 170:3455–3459

    Article  PubMed  CAS  Google Scholar 

  8. Vaitaitis GM, Wagner DH Jr (2008) High distribution of CD40 and TRAF2 in Th40 T cell rafts leads to preferential survival of this auto-aggressive population in autoimmunity. PLoS One 3:e2076

    Article  PubMed  PubMed Central  Google Scholar 

  9. Waid DM, Vaitaitis GM, Wagner DH Jr (2004) Peripheral CD410CD40+ auto-aggressive T cell expansion during insulin-dependent diabetes mellitus. Eur J Immunol 34:1488–1497

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Huang W, Mihara M, Sinha J, Davidson A (2002) Mechanism of action of combined short-term CTLA4Ig and anti-CD40 ligand in murine systemic lupus erythematosus. J Immunol 168:2046–2053

    Article  PubMed  CAS  Google Scholar 

  11. Yu S, Medling B, Yagita H, Braley-Mullen H (2001) Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J Autoimmun 16:37–46

    Article  PubMed  CAS  Google Scholar 

  12. van Kooten C, Banchereau J (1997) Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 9:330–337

    Article  PubMed  Google Scholar 

  13. Wagner DH Jr (2009) The co-evolution of our understanding of CD40 and inflammation. Diabetologia 52:997–999

    Article  PubMed  Google Scholar 

  14. Wagner DH Jr, Newell E, Sanderson RJ, Freed JH, Newell MK (1999) Increased expression of CD40 on thymocytes and peripheral T cells in autoimmunity: a mechanism for acquiring changes in the peripheral T cell receptor repertoire. Int J Mol Med 4:231–242

    PubMed  CAS  Google Scholar 

  15. Wagner DH Jr, Vaitaitis G, Sanderson R, Poulin M, Dobbs C, Haskins K (2002) Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc Natl Acad Sci U S A 99:3782–3787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Waid DM, Vaitaitis GM, Pennock ND, Wagner DH Jr (2008) Disruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T cells promotes diabetes. J Leukoc Biol 84:431–439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Waid DM, Wagner RJ, Putnam A et al (2007) A unique T cell subset described as CD410CD40+ T cells (TCD40) in human type 1 diabetes. Clin Immunol 124:138–148

    Article  PubMed  CAS  Google Scholar 

  18. Amrani A, Serra P, Yamanouchi J et al (2002) CD154-dependent priming of diabetogenic CD4(+) T cells dissociated from activation of antigen-presenting cells. Immunity 16:719–732

    Article  PubMed  CAS  Google Scholar 

  19. Kumanogoh A, Wang X, Lee I et al (2001) Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J Immunol 166:353–360

    Article  PubMed  CAS  Google Scholar 

  20. Wyzgol A, Muller N, Fick A et al (2009) Trimer stabilization, oligomerization, and antibody-mediated cell surface immobilization improve the activity of soluble trimers of CD27L, CD40L, 41BBL, and glucocorticoid-induced TNF receptor ligand. J Immunol 183:1851–1861

    Article  PubMed  CAS  Google Scholar 

  21. Armitage RJ, Fanslow WC, Strockbine L et al (1992) Molecular and biological characterization of a murine ligand for CD40. Nature 357:80–82

    Article  PubMed  CAS  Google Scholar 

  22. El Fakhry Y, Alturaihi H, Yacoub D et al (2012) Functional interaction of CD154 protein with alpha5beta1 integrin is totally independent from its binding to alphaIIbbeta3 integrin and CD40 molecules. J Biol Chem 287:18055–18066

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bishop GA, Hostager BS, Brown KD (2002) Mechanisms of TNF receptor-associated factor (TRAF) regulation in B lymphocytes. J Leukoc Biol 72:19–23

    PubMed  CAS  Google Scholar 

  24. Nguyen VT, Benveniste EN (2002) Critical role of tumor necrosis factor-alpha and NF-kappa B in interferon-gamma -induced CD40 expression in microglia/macrophages. J Biol Chem 277:13796–13803

    Article  PubMed  CAS  Google Scholar 

  25. Wagner DH Jr, Stout RD, Suttles J (1994) Role of the CD40-CD40 ligand interaction in CD4+ T cell contact- dependent activation of monocyte interleukin-1 synthesis. Eur J Immunol 24:3148–3154

    Article  PubMed  CAS  Google Scholar 

  26. Serra P, Amrani A, Yamanouchi J et al (2003) CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19:877–889

    Article  PubMed  CAS  Google Scholar 

  27. Baker RL, Wagner DH Jr, Haskins K (2008) CD40 on NOD CD4 T cells contributes to their activation and pathogenicity. J Autoimmun 31:385–392

    Article  PubMed  CAS  Google Scholar 

  28. Howard LM, Miga AJ, Vanderlugt CL et al (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 103:281–290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Boumpas DT, Furie R, Manzi S et al (2003) A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48:719–727

    Article  PubMed  CAS  Google Scholar 

  30. Davis JC Jr, Totoritis MC, Rosenberg J, Sklenar TA, Wofsy D (2001) Phase I clinical trial of a monoclonal antibody against CD40-ligand (IDEC-131) in patients with systemic lupus erythematosus. J Rheumatol 28:95–101

    PubMed  CAS  Google Scholar 

  31. Sidiropoulos PI, Boumpas DT (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13:391–397

    Article  PubMed  CAS  Google Scholar 

  32. Kitagawa M, Goto D, Mamura M et al (2005) Identification of three novel peptides that inhibit CD40-CD154 interaction. Mod Rheumatol 15:423–426

    Article  PubMed  CAS  Google Scholar 

  33. Deambrosis I, Lamorte S, Giaretta F et al (2009) Inhibition of CD40-CD154 costimulatory pathway by a cyclic peptide targeting CD154. J Mol Med (Berl) 87:181–197

    Article  CAS  Google Scholar 

  34. Allen SD, Rawale SV, Whitacre CC, Kaumaya PT (2005) Therapeutic peptidomimetic strategies for autoimmune diseases: costimulation blockade. J Pept Res 65:591–604

    Article  PubMed  CAS  Google Scholar 

  35. Bajorath J, Chalupny NJ, Marken JS et al (1995) Identification of residues on CD40 and its ligand which are critical for the receptor-ligand interaction. Biochemistry 34:1833–1844

    Article  PubMed  CAS  Google Scholar 

  36. Bajorath J, Marken JS, Chalupny NJ et al (1995) Analysis of gp39/CD40 interactions using molecular models and site-directed mutagenesis. Biochemistry 34:9884–9892

    Article  PubMed  CAS  Google Scholar 

  37. Margolles-Clark E, Umland O, Kenyon NS, Ricordi C, Buchwald P (2009) Small-molecule costimulatory blockade: organic dye inhibitors of the CD40-CD154 interaction. J Mol Med (Berl) 87:1133–1143

    Article  CAS  Google Scholar 

  38. Margolles-Clark E, Jacques-Silva MC, Ganesan L et al (2009) Suramin inhibits the CD40-CD154 costimulatory interaction: a possible mechanism for immunosuppressive effects. Biochem Pharmacol 77:1236–1245

    Article  PubMed  CAS  Google Scholar 

  39. Kaur M, Reed E, Sartor O, Dahut W, Figg WD (2002) Suramin’s development: what did we learn? Invest New Drugs 20:209–219

    Article  PubMed  CAS  Google Scholar 

  40. Moertl MG, Friedrich S, Kraschl J, Wadsack C, Lang U, Schlembach D (2011) Haemodynamic effects of carbetocin and oxytocin given as intravenous bolus on women undergoing caesarean delivery: a randomised trial. BJOG 118:1349–1356

    Article  PubMed  CAS  Google Scholar 

  41. Johnson KP (2012) Glatiramer acetate for treatment of relapsing-remitting multiple sclerosis. Exp Rev Neurother 12:371–384

    Article  CAS  Google Scholar 

  42. Hinke SA (2008) Diamyd, an alum-formulated recombinant human GAD65 for the prevention of autoimmune diabetes. Curr Opin Mol Ther 10:516–525

    PubMed  CAS  Google Scholar 

  43. Vaitaitis GM, Wagner DH Jr (2012) Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity. PLoS One 7:e38708

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Vaitaitis GM, Wagner DH Jr (2010) CD40 glycoforms and TNF receptors 1 and 2 in the formation of CD40 receptor(s) in autoimmunity. Mol Immunol 47:2303–2313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Vaitaitis GM, Wagner DH Jr (2013) CD40 interacts directly with RAG1 and RAG2 in autoaggressive T cells and Fas prevents CD40-induced RAG expression. Cell Mol Immunol 10:483–489

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the ADA and the JDRF, and an R01 from the National Institute of Diabetes and Digestive and Kidney Diseases awarded to DHW. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Duality of interest statement

DHW holds the intellectual property on the peptide and is cofounder and chief scientific officer of Op-T-Mune, which utilises the peptide for cell staining. MHO currently is employed at PAREXEL International; however, at the time of these studies he was a student in the laboratory of DHW. No collaboration or other interests exist between the DHW laboratory and PAREXEL.

Contribution statement

DHW and GMV contributed to the concept and design of the study. DHW, GMV, MHO, DMW and JRC contributed to the acquisition and interpretation of data and critically revised the article. GMV wrote the manuscript. All authors approved the final version to be published. DHW is the guarantor of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Wagner Jr..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaitaitis, G.M., Olmstead, M.H., Waid, D.M. et al. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 57, 2366–2373 (2014). https://doi.org/10.1007/s00125-014-3342-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-014-3342-5

Keywords

Navigation