, Volume 57, Issue 10, pp 2126–2135 | Cite as

PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism

  • Laia Salvadó
  • Emma Barroso
  • Anna Maria Gómez-Foix
  • Xavier Palomer
  • Liliane Michalik
  • Walter Wahli
  • Manuel Vázquez-Carrera



Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells.


Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet.


The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation.


Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.


AMPK ER stress ERK1/2 NF-κB PPAR β/δ 





Acetyl-CoA carboxylase 2


AMP-activated protein kinase


Activating transcription factor-6


Εukaryotic initiation factor 2α


Electrophoretic mobility shift assay


Endoplasmic reticulum


Extracellular signal-regulated kinase


Inhibitor of κB


Inositol-requiring 1 transmembrane kinase/endonuclease-1α


Nuclear factor-κB


Eukaryotic translation initiation factor-2α kinase 3


Peroxisome proliferator-activated receptor


Unfolded protein response


X-box binding protein-1



We thank A. Orozco (Department of Biochemistry and Molecular Biology of the University of Barcelona, Spain) for experimental assistance with human myotube cultures. We thank M. J. Birnbaum (Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA) for the pcDNA3/pAMPKalpha2-K45R plasmid.


This study was partly supported by funds from the Spanish Ministerio de Economía y Competitividad (SAF2009-06939 and SAF2012-30708) and the European Union ERDF. CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) is an Instituto de Salud Carlos III project. LS was supported by an FPI grant from the Spanish Ministerio de Economía y Competitividad. We thank the University of Barcelona’s Language Advisory Service for revising the manuscript.

Contribution statement

LS, EB, AMG-F, XP, LM, WW and MV-C processed the samples, analysed and prepared the data and were involved in drafting the article. LS, EB, AG-F, XP, LM and WW contributed to the interpretation of the data and revised the article. MV-C and LS designed the experiments and analysed and interpreted the data. MV-C wrote the manuscript and is responsible for the integrity of the work as a whole. All authors approved the final version of the manuscript.

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Supplementary material

125_2014_3331_MOESM1_ESM.pdf (75 kb)
ESM Methods (PDF 75 kb)
125_2014_3331_MOESM2_ESM.pdf (43 kb)
ESM Table 1 (PDF 43 kb)


  1. 1.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148:852–871PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929PubMedCrossRefGoogle Scholar
  3. 3.
    Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346PubMedCrossRefGoogle Scholar
  4. 4.
    Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461PubMedCrossRefGoogle Scholar
  7. 7.
    Eizirik DL, Cardozo AK, Cnop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29:42–61PubMedCrossRefGoogle Scholar
  8. 8.
    Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRefGoogle Scholar
  11. 11.
    Terai K, Hiramoto Y, Masaki M et al (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25:9554–9575PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dong Y, Zhang M, Wang S et al (2010) Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes 59:1386–1396PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Dong Y, Zhang M, Liang B et al (2010) Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Wang Y, Wu Z, Li D et al (2011) Involvement of oxygen-regulated protein 150 in AMP-activated protein kinase-mediated alleviation of lipid-induced endoplasmic reticulum stress. J Biol Chem 286:11119–11131PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Du J, Guan T, Zhang H, Xia Y, Liu F, Zhang Y (2008) Inhibitory crosstalk between ERK and AMPK in the growth and proliferation of cardiac fibroblasts. Biochem Biophys Res Commun 368:402–407PubMedCrossRefGoogle Scholar
  16. 16.
    Hwang SL, Jeong YT, Li X et al (2013) Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Br J Pharmacol 169:69–81PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Michalik L, Auwerx J, Berger JP et al (2006) International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741PubMedCrossRefGoogle Scholar
  18. 18.
    Lee CH, Chawla A, Urbiztondo N et al (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302:453–457PubMedCrossRefGoogle Scholar
  19. 19.
    Pascual G, Fong AL, Ogawa S et al (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437:759–763PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRefGoogle Scholar
  21. 21.
    Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384:39–43PubMedCrossRefGoogle Scholar
  22. 22.
    Auwerx J, Baulieu E, Beato M et al (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163CrossRefGoogle Scholar
  23. 23.
    Schuler M, Ali F, Chambon C et al (2006) PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab 4:407–414PubMedCrossRefGoogle Scholar
  24. 24.
    Lee CH, Olson P, Hevener A et al (2006) PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 103:3444–3449PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Barish GD, Narkar VA, Evans RM (2006) PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 116:590–597PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Krämer DK, Al-Khalili L, Guigas B, Leng Y, Garcia-Roves PM, Krook A (2007) Role of AMP kinase and PPARdelta in the regulation of lipid and glucose metabolism in human skeletal muscle. J Biol Chem 282:19313–19320PubMedCrossRefGoogle Scholar
  27. 27.
    Salvadó L, Coll T, Gómez-Foix AM et al (2013) Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 56:1372–1382PubMedCrossRefGoogle Scholar
  28. 28.
    Nadra K, Anghel SI, Joye E et al (2006) Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol 26:3266–3281PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Oliver WR Jr, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 98:5306–5311PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Kino T, Rice KC, Chrousos GP (2007) The PPARβ/δ agonist GW501516 suppresses interleukin 6-mediated hepatocyte acute phase reaction via STAT3 inhibition. Eur J Clin Invest 37:425–433PubMedCrossRefGoogle Scholar
  31. 31.
    Barroso E, Rodríguez-Calvo R, Serrano-Marco L et al (2011) The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 152:1848–1859PubMedCrossRefGoogle Scholar
  32. 32.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Weigert C, Brodbeck K, Staiger H et al (2004) Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB. J Biol Chem 279:23942–23952PubMedCrossRefGoogle Scholar
  34. 34.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 280:E745–E751PubMedGoogle Scholar
  35. 35.
    Pickup JC, Mattock MB, Chusney GD, Burt D (1997) NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia 40:1286–1292PubMedCrossRefGoogle Scholar
  36. 36.
    Hage Hassan R, Hainault I, Vilquin JT et al (2012) Endoplasmic reticulum stress does not mediate palmitate-induced insulin resistance in mouse and human muscle cells. Diabetologia 55:204–214PubMedCrossRefGoogle Scholar
  37. 37.
    Liang CP, Han S, Okamoto H et al (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–773PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7:1085–1094PubMedCrossRefGoogle Scholar
  39. 39.
    Andrulionyte L, Peltola P, Chiasson JL, Laakso M, STOP-NIDDM Study Group (2006) Single nucleotide polymorphisms of PPARD in combination with the Gly482Ser substitution of PGC-1A and the Pro12Ala substitution of PPARG2 predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. Diabetes 55:2148–2152PubMedCrossRefGoogle Scholar
  40. 40.
    Coll T, Alvarez-Guardia D, Barroso E et al (2010) Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells. Endocrinology 151:1560–1569PubMedCrossRefGoogle Scholar
  41. 41.
    Cao M, Tong Y, Lv Q et al (2012) PPARδ Activation RESCUES PAncreatic β-cell line INS-1E from palmitate-induced endoplasmic reticulum stress through enhanced fatty acid oxidation. PPAR Res 2012:680684PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ramirez T, Tong M, Chen WC, Nguyen QG, Wands JR, de la Monte SM (2013) Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-δ agonist treatment. J Gastroenterol Hepatol 28:179–187PubMedCrossRefGoogle Scholar
  43. 43.
    Bojic LA, Burke AC, Chokker SS et al (2014) Peroxisome Proliferator-Activated Receptor d agonist GW1516 attenuates diet-induced aortic inflammation, insulin resistance, and atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol 34:52–60PubMedCrossRefGoogle Scholar
  44. 44.
    Jager J, Corcelle V, Grémeaux T et al (2011) Deficiency in the extracellular signal-regulated kinase 1 (ERK1) protects leptin-deficient mice from insulin resistance without affecting obesity. Diabetologia 54:180–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Laia Salvadó
    • 1
    • 2
    • 3
  • Emma Barroso
    • 1
    • 2
    • 3
  • Anna Maria Gómez-Foix
    • 2
    • 3
    • 4
  • Xavier Palomer
    • 1
    • 2
    • 3
  • Liliane Michalik
    • 5
  • Walter Wahli
    • 5
    • 6
  • Manuel Vázquez-Carrera
    • 1
    • 2
    • 3
  1. 1.Department of Pharmacology and Therapeutic Chemistry, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain
  2. 2.Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
  3. 3.Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Spain
  4. 4.Department of Biochemistry and Molecular Biology, Faculty of BiologyUniversity of BarcelonaBarcelonaSpain
  5. 5.Center for Integrative Genomics, National Research Center Frontiers in GeneticsUniversity of LausanneLausanneSwitzerland
  6. 6.Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations