, Volume 56, Issue 12, pp 2609–2618

Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes

  • Limei Liu
  • Kazuaki Nagashima
  • Takao Yasuda
  • Yanjun Liu
  • Hai-rong Hu
  • Guang He
  • Bo Feng
  • Mingming Zhao
  • Langen Zhuang
  • Taishan Zheng
  • Theodore C. Friedman
  • Kunsan Xiang



More than 90% of Chinese familial early-onset type 2 diabetes mellitus is genetically unexplained. To investigate the molecular aetiology, we identified and characterised whether mutations in the KCNJ11 gene are responsible for these families.


KCNJ11 mutations were screened for 96 familial early-onset type 2 diabetic probands and their families. Functional significance of the identified mutations was confirmed by physiological analysis, molecular modelling and population survey.


Three novel KCNJ11 mutations, R27H, R192H and S116F117del, were identified in three families with early-onset type 2 diabetes mellitus. Mutated KCNJ11 with R27H or R192H markedly reduced ATP sensitivity (E23K>R27H>C42R>R192H>R201H), but no ATP-sensitive potassium channel currents were detected in the loss-of-function S116F117del channel in vitro. Molecular modelling indicated that R192H had a larger effect on the channel ATP-binding pocket than R27H, which may qualitatively explain why the ATP sensitivity of the R192H mutation is seven times less than R27H. The shape of the S116F117del channel may be compressed, which may explain why the mutated channel had no currents. Discontinuation of insulin and implementation of sulfonylureas for R27H or R192H carriers and continuation/switch to insulin therapy for S116F117del carriers resulted in good glycaemic control.


Our results suggest that genetic diagnosis for the KCNJ11 mutations in familial early-onset type 2 diabetes mellitus may help in understanding the molecular aetiology and in providing more personalised treatment for these specific forms of diabetes in Chinese and other Asian patients.


Familial early-onset type 2 diabetes mellitus KCNJ11 Kir6.2 Mutation 





Tyrosine phosphatase-like protein


Impaired glucose tolerance


ATP-sensitive potassium channel


Maturity-onset diabetes of the young


Permanent neonatal diabetes


Single nucleotide polymorphism




  1. 1.
    Bonnefond A, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416PubMedCrossRefGoogle Scholar
  2. 2.
    American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74CrossRefGoogle Scholar
  3. 3.
    Fajans SS, Bell GI (2011) MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 34:1878–1884PubMedCrossRefGoogle Scholar
  4. 4.
    Doria A, Yang Y, Malecki M et al (1999) Phenotypic characteristics of early-onset autosomal-dominant type 2 diabetes unlinked to known maturity-onset diabetes of the young (MODY) genes. Diabetes Care 22:253–261PubMedCrossRefGoogle Scholar
  5. 5.
    Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849PubMedCrossRefGoogle Scholar
  6. 6.
    Yorifuji T, Nagashima K, Kurokawa K et al (2005) The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J Clin Endocrinol Metab 90:3174–3178PubMedCrossRefGoogle Scholar
  7. 7.
    Bonnefond A, Philippe J, Durand E et al (2012) Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One 7:e37423PubMedCrossRefGoogle Scholar
  8. 8.
    Inagaki N, Gonoi T, Clement JP 4th et al (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170PubMedCrossRefGoogle Scholar
  9. 9.
    Tucker SJ, Gribble FM, Proks P et al (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO J 17:3290–3296PubMedCrossRefGoogle Scholar
  10. 10.
    Girard CA, Wunderlich FT, Shimomura K et al (2009) Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J Clin Invest 119:80–90PubMedGoogle Scholar
  11. 11.
    Proks P, Reimann F, Green N, Gribble F, Ashcroft F (2002) Sulfonylurea stimulation of insulin secretion. Diabetes 51(Suppl 3):S368–S376PubMedCrossRefGoogle Scholar
  12. 12.
    Gloyn AL, Weedon MN, Owen KR et al (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572PubMedCrossRefGoogle Scholar
  13. 13.
    Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of KATP channels learned from Kir6. 2 genetically engineered mice. Diabetes 49:311–318PubMedCrossRefGoogle Scholar
  14. 14.
    Miki T, Tashiro F, Iwanaga T et al (1997) Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl Acad Sci U S A 94:11969–11973PubMedCrossRefGoogle Scholar
  15. 15.
    Fukui M, Nakano K, Obayashi H et al (1997) High prevalence of mitochondrial diabetes mellitus in Japanese patients with major risk factors. Metabolism 46:793–795PubMedCrossRefGoogle Scholar
  16. 16.
    American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69CrossRefGoogle Scholar
  17. 17.
    Yamagata K, Oda N, Kaisaki PJ et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384:455–458PubMedCrossRefGoogle Scholar
  18. 18.
    Yamagata K, Furuta H, Oda N et al (1996) Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 384:458–460PubMedCrossRefGoogle Scholar
  19. 19.
    Froguel P, Zouali H, Vionnet N et al (1993) Familial hyperglycemia due to mutations in glucokinase: definition of a subtype of diabetes mellitus. N Engl J Med 328:697–702PubMedCrossRefGoogle Scholar
  20. 20.
    Chèvre JC, Hani EH, Stoffers DA, Habener JF, Froguel P (1998) Insulin promoter factor 1 gene is not a major cause of maturity-onset diabetes of the young in French Caucasians. Diabetes 47:843–844PubMedCrossRefGoogle Scholar
  21. 21.
    Beards F, Frayling T, Bulman M et al (1998) Mutations in hepatocyte nuclear factor 1beta are not a common cause of maturity-onset diabetes of the young in the U.K. Diabetes 47:1152–1154PubMedCrossRefGoogle Scholar
  22. 22.
    Malecki MT, Jhala US, Antonellis A et al (1999) Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23:323–328PubMedCrossRefGoogle Scholar
  23. 23.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (position statement). Diabetes Care 26(Suppl 1):S5–S20Google Scholar
  24. 24.
    Pegan S, Arrabit C, Zhou W et al (2005) Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8:279–287PubMedCrossRefGoogle Scholar
  25. 25.
    Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM (2005) Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 24:229–239PubMedCrossRefGoogle Scholar
  26. 26.
    Nagano N, Urakami T, Mine Y et al (2012) Diabetes caused by Kir6.2 mutation: successful treatment with oral glibenclamide switched from continuous subcutaneous insulin infusion in the early phase of the disease. Pediatr Int 54:277–279PubMedCrossRefGoogle Scholar
  27. 27.
    Pearson ER, Flechtner I, Njølstad PR et al (2006) Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355:467–477PubMedCrossRefGoogle Scholar
  28. 28.
    Bonellie S, Chalmers J, Gray R, Greer I, Jarvis S, Williams C (2008) Centile charts for birthweight for gestational age for Scottish singleton births. BMC Pregnancy Childbirth 8:5PubMedCrossRefGoogle Scholar
  29. 29.
    Ng MC, Lee SC, Ko GT et al (2001) Familial early-onset type 2 diabetes in Chinese patients: obesity and genetics have more significant roles than autoimmunity. Diabetes Care 24:663–671PubMedCrossRefGoogle Scholar
  30. 30.
    Xu JY, Dan QH, Chan V et al (2005) Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. Eur J Hum Genet 13:422–427PubMedCrossRefGoogle Scholar
  31. 31.
    Liu L, Furuta H, Minami A et al (2007) A novel mutation, Ser159Pro in the NeuroD1/BETA2 gene contributes to the development of diabetes in a Chinese potential MODY family. Mol Cell Biochem 303:115–120PubMedCrossRefGoogle Scholar
  32. 32.
    Villareal DT, Koster JC, Robertson H et al (2009) Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58:1869–1878PubMedCrossRefGoogle Scholar
  33. 33.
    Schwanstecher C, Meyer U, Schwanstecher M (2002) Kir6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K+ channels. Diabetes 51:875–879PubMedCrossRefGoogle Scholar
  34. 34.
    Klupa T, Edghill EL, Nazim J et al (2005) The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mutation. Diabetologia 8:1029–1031CrossRefGoogle Scholar
  35. 35.
    Girard CA, Shimomura K, Proks P et al (2006) Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes. Pflugers Arch 453:323–332PubMedCrossRefGoogle Scholar
  36. 36.
    Flanagan SE, Patch AM, Mackay DJ et al (2007) Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56:1930–1937PubMedCrossRefGoogle Scholar
  37. 37.
    Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ (2004) Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 84:239–275PubMedCrossRefGoogle Scholar
  38. 38.
    Loechner KJ, Akrouh A, Kurata HT et al (2011) Congenital hyperinsulinism and glucose hypersensitivity in homozygous and heterozygous carriers of Kir6.2 (KCNJ11) mutation V290M mutation: K(ATP) channel inactivation mechanism and clinical management. Diabetes 60:209–217PubMedCrossRefGoogle Scholar
  39. 39.
    Huopio H, Otonkoski T, Vauhkonen I, Reimann F, Ashcroft FM, Laakso M (2003) A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 361:301–307PubMedCrossRefGoogle Scholar
  40. 40.
    Nichols CG, Koster JC, Remedi MS (2007) β-cell hyperexcitability: from hyperinsulinism to diabetes. Diabetes Obes Metab 9(Suppl 2):81–88PubMedCrossRefGoogle Scholar
  41. 41.
    Suchi M, MacMullen CM, Thornton PS et al (2006) Molecular and immunohistochemical analyses of the focal form of congenital hyperinsulinism. Mod Pathol 19:122–129PubMedCrossRefGoogle Scholar
  42. 42.
    Oyama K, Minami K, Ishizaki K, Fuse M, Miki T, Seino S (2006) Spontaneous recovery from hyperglycemia by regeneration of pancreatic beta-cells in Kir6.2G132S transgenic mice. Diabetes 55:1930–1938PubMedCrossRefGoogle Scholar
  43. 43.
    Hwang JS, Shin CH, Yang SW, Jung SY, Huh N (2006) Genetic and clinical characteristics of Korean maturity-onset diabetes of the young (MODY) patients. Diabetes Res Clin Pract 74:75–81PubMedCrossRefGoogle Scholar
  44. 44.
    Plengvidhya N, Boonyasrisawat W, Chongjaroen N et al (2009) Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus. Clin Endocrinol (Oxf) 70:847–853CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Limei Liu
    • 1
  • Kazuaki Nagashima
    • 2
  • Takao Yasuda
    • 3
  • Yanjun Liu
    • 4
  • Hai-rong Hu
    • 5
  • Guang He
    • 6
  • Bo Feng
    • 7
  • Mingming Zhao
    • 1
  • Langen Zhuang
    • 1
  • Taishan Zheng
    • 1
  • Theodore C. Friedman
    • 4
  • Kunsan Xiang
    • 1
  1. 1.Department of Endocrinology & Metabolism, Shanghai Jiaotong University Affiliated Sixth People’s HospitalShanghai Diabetes InstituteShanghaiChina
  2. 2.Department of Diabetes and Clinical Nutrition, Graduate School of MedicineKyoto UniversityKyotoJapan
  3. 3.Division of Cellular and Molecular Medicine, Department of Physiology and Cell BiologyKobe University Graduate School of MedicineKobeJapan
  4. 4.UCLA School of Medicine, Division of EndocrinologyCharles R. Drew University of Medicine & SciencesLos AngelesUSA
  5. 5.State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
  6. 6.Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education)Shanghai Jiaotong UniversityShanghaiChina
  7. 7.Department of Endocrinology, Tongji UniversityThe Affiliated East Hospital, Tongji UniversityShanghaiChina

Personalised recommendations