Theoretical and Applied Genetics

, Volume 94, Issue 1, pp 39–45 | Cite as

Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population

  • M. Maheswaran
  • P. K. Subudhi
  • S. Nandi
  • J. C. Xu
  • A. Parco
  • D. C. Yang
  • N. Huang
Article

Abstract

We exploited the newly developed amplified fragment length polymorphism (AFLP) technique to study the polymorphism, distribution and inheritance of AFLP markers with a doubled haploid rice population derived from ‘IR64’/‘Azucena’. Using only 20 pairs of primer combinations, we detected 945 AFLP bands of which 208 were polymorphic. All 208 AFLP markers were mapped and distributed over all 12 chromosomes. When these were compared with RFLP markers already mapped in the population, we found the AFLP markers to be highly polymorphic in rice and to follow Mendelian segregation. As linkage map of rice can be generated rapidly with AFLP markers they will be very useful for marker-assisted backcrossing.

Key words

Genetic map Marker-aided selection Oryza sativa RFLP markers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  2. Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73PubMedCrossRefGoogle Scholar
  3. Causse M, Fulton TM, Cho YG, Ahn SN, Chunwongse EJ, Wu K, Xiao J, Yu Z, Ronald PC, Harrington SB, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274.PubMedGoogle Scholar
  4. Dellaporta SL, Wood J, Hick JB (1983) A plant DNA mini preparation; version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  5. Guiderdoni E, Galinato E, Luistro J, Vergara G (1992) Anther culture of tropical japonica X indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224CrossRefGoogle Scholar
  6. Hodges TK, Peng J, Lyznik LA, Koetje DS (1991) Transformation and regeneration of rice protoplasts. In: Khush G, Toenniessen G (eds) Rice biotechnology. IRRI, Manila, Philippines, pp 157–174Google Scholar
  7. Huang N, McCouch SR, Mew T, Parco A, Guiderdoni E (1994) Development of a RFLP map from a doubled haploid population of rice. Rice Genet Newsl 11:134–137Google Scholar
  8. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  9. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin S-Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang Z-X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A-300-kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372PubMedCrossRefGoogle Scholar
  10. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  11. Litt M, Luty J (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet 44:391–401Google Scholar
  12. Lorieux M, Petrov M, Huang N, Faure J, Guiderdoni E, Chesquiere A (1996) Aroma in rice is controlled by a major gene and at least two minor QTLs. Theor Appl Genet (in press)Google Scholar
  13. Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses line up and form a circle. Curr Biol 5:737–739PubMedCrossRefGoogle Scholar
  14. Olson M, Hood L, Cantor C, Botstein D (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435PubMedCrossRefGoogle Scholar
  15. Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding:RAPDS, microsatellites and machines. Trends Genet 9: 275–280PubMedCrossRefGoogle Scholar
  16. Tanksley SD, Young ND, Patterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7:257–264CrossRefGoogle Scholar
  17. Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones JDG (1995) Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J 8:785–794PubMedCrossRefGoogle Scholar
  18. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  19. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey VS (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  20. Zabeau M, Vos P 1993 Selective restriction fragment amplification : a general method for DNA fingerprinting. European Patent Application number : 92402629.7, Publication number 0534858 AlGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • M. Maheswaran
    • 1
  • P. K. Subudhi
    • 1
  • S. Nandi
    • 1
  • J. C. Xu
    • 1
  • A. Parco
    • 1
  • D. C. Yang
    • 1
  • N. Huang
    • 1
  1. 1.International Rice Research InstituteManilaPhilippines

Personalised recommendations