Skip to main content
Log in

A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus.

Abstract

The yellow-seed trait (YST) has always been a main breeding objective for rapeseed because yellow-seeded B. napus generally contains higher oil contents, fewer pigments and polyphenols and lower fiber content than black-seeded B. napus, although the mechanism controlling this correlation remains unclear. In this study, QTL mapping was implemented for YST based on a KN double haploid population derived from the hybridization of yellow-seeded B. napus N53-2 with a high oil content and black-seeded Ken-C8 with a relatively low oil content. Ten QTLs were identified, including four stable QTLs that could be detected in multiple environments. A major QTL, cqSC-A09, on chromosome A09 was identified by both QTL mapping and BSR-Seq technology, and explained more than 41% of the phenotypic variance. The major QTL cqSC-A09 for YST not only controls the seed color but also affects the oil and fiber contents in seeds. More importantly, the advantageous allele could increase the oil content and reduce the pigment and fiber content at the same time. This is the first QTL reported to control seed color, oil content and fiber content simultaneously with a large effect and has great application value for breeding high oil varieties with high seed quality. Important candidate genes, including BnaA09. JAZ1, BnaA09. GH3.3 and BnaA09. LOX3, were identified for cqSC-A09 by combining sequence variation annotation, expression differences and an interaction network, which lays a foundation for further cloning and breeding applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbadi A, Leckband G (2011) Rapeseed breeding for oil content, quality, and sustainability. Eur J Lipid Sci Tech 113:1198–1206

    Article  CAS  Google Scholar 

  • Akhov L, Ashe P, Tan YF, Datla R, Selvaraj G (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87:616–625

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Auger B, Marnet N, Gautier V, Maia-Grondard A, Leprince F, Renard M, Guyot S, Nesi N, Routaboul JM (2010) A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L. J Agr Food Chem 58:6246–6256

    Article  CAS  Google Scholar 

  • Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Luhs W, Friedt W (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Behnke N, Suprianto E, Mollers C (2018) A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). Theor Appl Genet 131:2477–2492

    Article  CAS  PubMed  Google Scholar 

  • Buer CS, Djordjevic MA (2009) Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J Exp Bot 60:751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai GQ, Yang QY, Yi B, Fan CC, Edwards D, Batley J, Zhou YM (2014) A complex recombination pattern in the genome of allotetraploid Brassica napus as revealed by a high-density genetic map. PLoS ONE 9:e109910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chao H, Raboanatahiry N, Wang X, Zhao W, Chen L, Guo L, Li B, Hou D, Pu S, Zhang L, Wang H, Wang B, Li M (2019) Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breed Sci 69:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LQ, Lin IWN, Qu XQ, Sosso D, McFarlane HE, Londono A, Samuels AL, Frommer WB (2015) A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell 27:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MX, Xuan LJ, Wang Z, Zhou LH, Li ZL, Du X, Ali E, Zhang GP, Jiang LX (2014) TRANSPARENT TESTA8 inhibits seed fatty acid accumulation by targeting several seed development regulators in Arabidopsis. Plant Physiol 165:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubillos FA, Brice C, Molinet J, Tisne S, Abarca V, Tapia SM, Oporto C, Garcia V, Liti G, Martinez C (2017) Identification of nitrogen consumption genetic variants in yeast through QTL mapping and bulk segregant RNA-Seq analyses. G3 Genes Genom Genet 7:1693–1705

    CAS  Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du HW, Zhu JX, Su H, Huang M, Wang HW, Ding SC, Zhang BL, Luo A, Wei SD, Tian XH, Xu YB (2017) Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in Maize. Front Plant Sci 8:1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  CAS  PubMed  Google Scholar 

  • Gacek K, Bayer PE, Anderson R, Severn-Ellis AA, Wolko J, Lopatynska A, Matuszczak M, Bocianowski J, Edwards D, Batley J (2021) QTL genetic mapping study for traits affecting meal quality in winter oilseed rape (Brassica napus L.). Genes (basel) 12:1235

    Article  CAS  Google Scholar 

  • Gu AX, Meng C, Chen YQ, Wei L, Dong H, Lu Y, Wang YH, Chen XP, Zhao JJ, Shen SX (2017) Coupling Seq-BSA and RNA-Seq analyses reveal the molecular pathway and genes associated with heading type in chinese cabbage. Front Genet 8:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang H, Gao H, Liu B, Fan M, Wang JJ, Wang CL, Tian HX, Wang LX, Xie CY, Wu DW, Liu LY, Yan JB, Qi TC, Song SS (2018) bHLH13 regulates jasmonate-mediated defense responses and growth. Evol Bioinform 14:1176934318790265

    Article  Google Scholar 

  • Jiang CC, Shi JQ, Li RY, Long Y, Wang H, Li DR, Zhao JY, Meng JL (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Jiang JJ, Zhu S, Yuan Y, Wang Y, Zeng L, Batley J, Wang YP (2019) Transcriptomic comparison between developing seeds of yellow- and black-seeded Brassica napus reveals that genes influence seed quality. BMC Plant Biol 19:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li B, Zhao W, Li D, Chao H, Zhao X, Ta N, Li Y, Guan Z, Guo L, Zhang L, Li S, Wang H, Li M (2018) Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci 277:296–310

    Article  CAS  PubMed  Google Scholar 

  • Liu CL, Zhou Q, Dong L, Wang H, Liu F, Weng JF, Li XH, Xie CX (2016) Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing. BMC Genom 17:915

    Article  CAS  Google Scholar 

  • Liu L, Stein A, Wittkop B, Sarvari P, Li J, Yan X, Dreyer F, Frauen M, Friedt W, Snowdon RJ (2012a) A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 124:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Liu LZ, Qu CM, Wittkop B, Yi B, Xiao Y, He YJ, Snowdon RJ, Li JN (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SZ, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012b) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11

    Google Scholar 

  • Miao L, Chao H, Chen L, Wang H, Zhao W, Li B, Zhang L, Li H, Wang B, Li M (2019) Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theor Appl Genet 132:1761–1775

    Article  CAS  PubMed  Google Scholar 

  • Mittasch J, Bottcher C, Frolov A, Strack D, Milkowski C (2013) Reprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of REDUCED EPIDERMAL FLUORESCENCE1. Plant Physiol 161:1656–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Wu LM, Li YH, Huang HL, Qian MC, Sun W, Zhu H, Xu YF, Fan YH, Mahmood U, Xu BB, Zhang K, Qu CM, Li JN, Lu K (2020) Deciphering the transcriptional regulatory networks that control size, color, and oil content in Brassica rapa seeds. Biotechnol Biofuels 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raboanatahiry N, Chao H, Guo L, Gan J, Xiang J, Yan M, Zhang L, Yu L, Li M (2017) Synteny analysis of genes and distribution of loci controlling oil content and fatty acid profile based on QTL alignment map in Brassica napus. BMC Genomics 18:776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman MH, Joersbo M, Poulsen MH (2001) Development of yellow-seeded Brassica napus of double low quality. Plant Breeding 120:473–478

    Article  CAS  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    Article  CAS  PubMed  Google Scholar 

  • Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W (2010) Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome 53:917–928

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Wittkop B, Liu LZ, Obermeier C, Friedt W, Snowdon RJ (2013) Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed 132:382–389

    Article  CAS  Google Scholar 

  • Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. P Natl Acad Sci USA 105:3151–3156

    Article  CAS  Google Scholar 

  • Wang B, Wu ZK, Li ZH, Zhang QH, Hu JL, Xiao YJ, Cai DF, Wu JS, King GJ, Li HT, Liu KD (2018) Dissection of the genetic architecture of three seed-quality traits and consequences for breeding in Brassica napus. Plant Biotech J 16:1336–1348

    Article  CAS  Google Scholar 

  • Wang J, Jian HJ, Wei LJ, Qu CM, Xu XF, Lu K, Qian W, Li JN, Li MT, Liu LZ (2015) Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in rapeseed (Brassica napus L.). PLoS ONE 10:e0145045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Xian X, Xu X, Qu C, Lu K, Li J, Liu L (2017) Genome-wide association mapping of seed coat color in Brassica napus. J Agric Food Chem 65:5229–5237

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B napus. PLoS ONE 8:e80569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Chen MX, Chen TL, Xuan LJ, Li ZL, Du X, Zhou LH, Zhang GP, Jiang LX (2014) TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant J 77:757–769

    Article  CAS  PubMed  Google Scholar 

  • Warwick SI, Simard MJ, Legere A, Beckie HJ, Braun L, Zhu B, Mason P, Seguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) OE Schulz. Theor Appl Genet 107:528–539

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Zhu LX, Qi LP, Ke HM, Yi B, Shen JX, Tu JX, Ma CZ, Fu TD (2012) Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus. Theor Appl Genet 125:19–32

    Article  PubMed  Google Scholar 

  • Western TL, Skinner DJ, Haughn GW (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiol 122:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie T, Chen X, Guo TL, Rong H, Chen ZY, Sun QF, Batley J, Jiang JJ, Wang YP (2020) Targeted knockout of BnTT2 homologues for yellow-seeded Brassica napus with reduced flavonoids and improved fatty acid composition. J Agr Food Chem 68:5676–5690

    Article  CAS  Google Scholar 

  • Xuan LJ, Zhang CC, Yan T, Wu DZ, Hussain N, Li ZL, Chen MX, Pan JW, Jiang LX (2018) TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ 41:2773–2790

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Xia L, Wei C, Yi B, Jing W, Shen J, Ma C, Chen B, Tu J, Fu T (2011) Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No. 2127–17. Mol Breeding 28:335–342

    Article  CAS  Google Scholar 

  • Zhai Y, Yu K, Cai S, Hu L, Amoo O, Xu L, Yang Y, Ma B, Jiao Y, Zhang C, Khan MHU, Khan SU, Fan C, Zhou Y (2020) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J 18:1153–1168

    Article  CAS  PubMed  Google Scholar 

  • Zhou LH, Li YL, Hussain N, Li ZL, Wu DZ, Jiang LX (2016) Allelic variation of BnaC.TT2.a and its association with seed coat color and fatty acids in rapeseed (Brassica napus L.). PLoS ONE 11:e0146661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (31871656, 32001583 and 32072098), and the Key Research Plan Project of Shaanxi Province (2020ZDLNY04-01).

Author information

Authors and Affiliations

Authors

Contributions

HC carried out QTL mapping and BSR analysis and wrote the manuscript. LG, WZ and HL participated in the field experiment and surveyed and analyzed the phenotypic data. ML designed the overall study and provided guidelines for writing the paper.

Corresponding author

Correspondence to Maoteng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Communicated by Jacqueline Batley.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, H., Guo, L., Zhao, W. et al. A major yellow-seed QTL on chromosome A09 significantly increases the oil content and reduces the fiber content of seed in Brassica napus. Theor Appl Genet 135, 1293–1305 (2022). https://doi.org/10.1007/s00122-022-04031-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04031-0

Navigation