Skip to main content
Log in

MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Analysis of drought-related genes in cassava shows the involvement of MeSPL9 in drought stress tolerance and overexpression of a dominant-negative form of this gene demonstrates its negative roles in drought stress resistance.

Abstract

Drought stress severely impairs crop yield and is considered a primary threat to food security worldwide. Although the SQUAMOSA promoter binding protein-like 9 (SPL9) gene participates extensively in numerous developmental processes and in plant response to abiotic stimuli, its role and regulatory pathway in cassava (Manihot esculenta) response to the drought condition remain elusive. In the current study, we show that cassava SPL9 (MeSPL9) plays negative roles in drought stress resistance. MeSPL9 expression was strongly repressed by drought treatment. Overexpression of a dominant-negative form of miR156-resistant MeSPL9, rMeSPL9-SRDX, in which a 12-amino acid repressor sequence was fused to rMeSPL9 at the C terminus, conferred drought tolerance without penalizing overall growth. rMeSPL9-SRDX-overexpressing lines not only exhibited increased osmoprotectant metabolites including proline and anthocyanin, but also accumulated more endogenous jasmonic acid (JA) and soluble sugars. Transcriptomic and real-time PCR analysis suggested that differentially expressed genes were involved in sugar or JA biosynthesis, signaling, and metabolism in transgenic cassava under drought conditions. Exogenous application of JA further confirmed that JA conferred improved drought resistance and promoted stomatal closure in cassava leaves. Taken together, our findings suggest that MeSPL9 affects drought resistance by modulating protectant metabolite levels and JA signaling, which have substantial implications for engineering drought tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta IF, Farmer EE (2010) Jasmonates. Arabidopsis Book 8:e0129. https://doi.org/10.1199/tab.0129

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    Article  PubMed  PubMed Central  Google Scholar 

  • An D, Ma Q, Wang H, Yang J, Zhou W, Zhang P (2017) Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Mol Biol 94:109–124

    Article  CAS  PubMed  Google Scholar 

  • Brugiere N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE (2017) Overexpression of RING domain E3 Ligase ZmXerico1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiol 175:1350–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant, Cell Environ 30:1381–1399

    Article  CAS  Google Scholar 

  • Chen X, Xia J, Xia Z, Zhang H, Zeng C, Lu C, Zhang W, Wang W (2015) Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. BMC Plant Biol 15:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Lei N, Li S, Liao W, Shen J, Peng M (2019) The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: a transcriptome analysis. Plant Physiol Biochem: PPB 138:9–16

    Article  CAS  PubMed  Google Scholar 

  • Cui LG, Shan JX, Shi M, Gao JP, Lin HX (2015) The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J: Cell Mol Biol 80:1108–1117

    Article  Google Scholar 

  • Dahro B, Wang F, Peng T, Liu JH (2016) PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol 16:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, Santino A (2012) Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem: PPB 61:115–122

    Article  PubMed  Google Scholar 

  • Dobra J, Vankova R, Havlova M, Burman AJ, Libus J, Storchova H (2011) Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol 168:1588–1597

    Article  CAS  PubMed  Google Scholar 

  • Dyson BC, Allwood JW, Feil R, Xu Y, Miller M, Bowsher CG, Goodacre R, Lunn JE, Johnson GN (2015) Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation. Plant, Cell Environ 38:1404–1417

    Article  CAS  Google Scholar 

  • El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56:481–501

    Article  CAS  PubMed  Google Scholar 

  • Fabregas N, Lozano-Elena F, Blasco-Escamez D, Tohge T, Martinez-Andujar C, Albacete A, Osorio S, Bustamante M, Riechmann JL, Nomura T, Yokota T, Conesa A, Alfocea FP, Fernie AR, Cano-Delgado AI (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9:4680

    Article  PubMed  PubMed Central  Google Scholar 

  • Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A (2019) The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biol 19:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DP (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Ding Z, Han B, Hu W, Li Y, Zhang J (2016) Physiological investigation and transcriptome analysis of polyethylene glycol (PEG)-induced dehydration stress in cassava. Int J Mol Sci 17:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L (2018) OsJAZ1 Attenuates drought resistance by regulating JA and ABA signaling in rice. Front Plant Sci 8:2108

    Article  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo AY, Zhu QH, Gu X, Ge S, Yang J, Luo J (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418:1–8

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo L, Devaiah SP, Narasimhan R, Pan X, Zhang Y, Zhang W, Wang X (2012) Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Ddelta to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 24:2200–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7:4017

    Article  PubMed  PubMed Central  Google Scholar 

  • Han GZ (2017) Evolution of jasmonate biosynthesis and signaling mechanisms. J Exp Bot 68:1323–1331

    CAS  PubMed  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J: Cell Mol Biol 34:733–739

    Article  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M (2017a) Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front Plant Sci 8:1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, Wang W, Peng M (2017b) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7:45981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RJ, Li LM, Liu XL, Kim JC, Jenks MA, Lu S (2019a) Diurnal regulation of plant epidermal wax synthesis through antagonistic roles of the transcription factors SPL9 and DEWAX. Plant Cell 31:2711–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wei W, Li F, Zhang L, Deng X, Liu Y, Yang S (2019b) The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for abiotic stress response in wheat. Int J Mol Sci 20:1104

    Article  CAS  PubMed Central  Google Scholar 

  • Liao W, Wang G, Li Y, Wang B, Zhang P, Peng M (2016) Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Sci Rep 6:21542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LiCheng SZ, Peng M (2020) Genome-wide identification of miRNAs targets involved in cold response in cassava. Plant Omics J 13:57–64

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lotkowska ME, Tohge T, Fernie AR, Xue GP, Balazadeh S, Mueller-Roeber B (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169:1862–1880

    PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Maloney VJ, Park JY, Unda F, Mansfield SD (2015) Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. J Exp Bot 66:4383–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YB, Liu YQ, Chen DY, Chen FY, Fang X, Hong GJ, Wang LJ, Wang JW, Chen XY (2017) Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat Commun 8:13925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing AH, Park KI, Ai TN, Chung MY, Han JS, Kang YW, Lim KB, Kim CK (2017) Overexpression of snapdragon delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biol 17:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, Olasanmi B, Fregene M (2013) Phenotypic approaches to drought in cassava: review. Front Physiol 4:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozturk B, Yildiz K, Kucuker E (2015) Effect of pre-harvest methyl jasmonate treatments on ethylene production, water-soluble phenolic compounds and fruit quality of Japanese plums. J Sci Food Agric 95:583–591

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro C, Antonio C, Ortuno MF, Dobrev PI, Hartung W, Thomas-Oates J, Ricardo CP, Vankova R, Chaves MM, Wilson JC (2011) Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses. J Exp Bot 62:4965–4974

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar V, Lottgert T, Geimer S, Dormann P, Kruger S, Vijayakumar V, Schreiber L, Gobel C, Feussner K, Feussner I, Marin K, Staehr P, Bell K, Flugge UI, Hausler RE (2010) Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22:2594–2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989

    Article  CAS  PubMed  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruan MB, Guo X, Wang B, Yang YL, Li WQ, Yu XL, Zhang P, Peng M (2017) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot 68:3657–3672

    Article  CAS  PubMed  Google Scholar 

  • Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Sperdouli I, Moustakas M (2012) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169:577–585

    Article  CAS  PubMed  Google Scholar 

  • Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Baurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M (2012) Transcriptome analysis using a high-density oligomicroarray under drought stress in various genotypes of cassava: an important tropical crop. DNA Res: Int J Rapid Publ Rep Genes Genomes 19:335–345

    Article  CAS  Google Scholar 

  • Visentin I, Pagliarani C, Deva E, Caracci A, Tureckova V, Novak O, Lovisolo C, Schubert A, Cardinale F (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant, Cell Environ 43:1613–1624

    Article  CAS  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu W, Wang X, Yang R, Wu Z, Wang H, Wang L, Hu Z, Guo S, Zhang H, Lin J, Fu C (2020) MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Hortic Res 7:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development: an update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Strnad M (2016) Jasmonate signaling in plant stress responses and development - active and inactive compounds. New Biotechnol 33:604–613

    Article  CAS  Google Scholar 

  • Wei T, Wang Y, Xie Z, Guo D, Chen C, Fan Q, Deng X, Liu JH (2019) Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata. Plant Biotechnol J 17:1394–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Liu W, Hu W, Yan Y, Shi H (2020) The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytol 226:476–491

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol 10(Suppl 1):50–62

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Q, Liao J, Cao S, Li M, Lv T, Qi H (2020) CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino). Sci Rep 10:17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye BB, Shang GD, Pan Y, Xu ZG, Zhou CM, Mao YB, Bao N, Sun L, Xu T, Wang JW (2020) AP2/ERF Transcription factors integrate age and wound signals for root regeneration. Plant Cell 32:226–241

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Potrykus I, Puonti-Kaerlas J (2000) Efficient production of transgenic cassava using negative and positive selection. Transgenic Res 9:405–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hainan Provincial Natural Science Foundation of China (320MS097), the National Key Research and Development Program of China (2019YFD1001105, 2019YFD1000500, 2018YFD1000500), and the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences (1630052021026).

Funding

Natural Science Foundation of Hainan Province, 320MS097, Shuxia Li

Author information

Authors and Affiliations

Authors

Contributions

M.P. and X.Y. designed the experiments; S.L., Z.L., S.D., X.Y., P.Z., Z.C., and W.L. conducted the experiments; S.L., X.Y., and Z.C. wrote the manuscript. We would like to thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Corresponding authors

Correspondence to Shuxia Li, Xiang Yu or Ming Peng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Ian D. Godwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cheng, Z., Li, Z. et al. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. Theor Appl Genet 135, 817–832 (2022). https://doi.org/10.1007/s00122-021-04000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-04000-z

Navigation