Skip to main content

Advertisement

Log in

Genomics-assisted breeding for pigeonpea improvement

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Key message

The review outlines advances in pigeonpea genomics, breeding and seed delivery systems to achieve yield gains at farmers’ field.

Abstract

Pigeonpea is a nutritious and stress-tolerant grain legume crop of tropical and subtropical regions. Decades of breeding efforts in pigeonpea have resulted in development of a number of high-yielding cultivars. Of late, the development of CMS-based hybrid technology has allowed the exploitation of heterosis for yield enhancement in this crop. Despite these positive developments, the actual on-farm yield of pigeonpea is still well below its potential productivity. Growing needs for high and sustainable pigeonpea yields motivate scientists to improve the breeding efficiency to deliver a steady stream of cultivars that will provide yield benefits under both ideal and stressed environments. To achieve this objective in the shortest possible time, it is imperative that various crop breeding activities are integrated with appropriate new genomics technologies. In this context, the last decade has seen a remarkable rise in the generation of important genomic resources such as genome-wide markers, high-throughput genotyping assays, saturated genome maps, marker/gene–trait associations, whole-genome sequence and germplasm resequencing data. In some cases, marker/gene–trait associations are being employed in pigeonpea breeding programs to improve the valuable yield and market-preferred traits. Embracing new breeding tools like genomic selection and speed breeding is likely to improve genetic gains. Breeding high-yielding pigeonpea cultivars with key adaptation traits also calls for a renewed focus on systematic selection and utilization of targeted genetic resources. Of equal importance is to overcome the difficulties being faced by seed industry to take the new cultivars to the doorstep of farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BES:

BAC-end sequence

CAPS:

Cleaved amplified polymorphic sequence

CcGEA:

Cajanus cajan gene expression atlas

CMS:

Cytoplasmic nuclear male sterility

CNV:

Copy number variation

DArT:

Diversity arrays technology

EST:

Expressed sequenced tag

FW:

Fusarium wilt

GBS:

Genotyping-by-sequencing 

GEBV:

Genomic estimated breeding value

GMS:

Genic male sterility

GoT:

Grow-out test

GWAS:

Genome-wide association study

LTR:

Long terminal repeat

InDel:

Insertion/deletion

MABC:

Marker-assisted backcrossing

MAGIC:

Multiparent advanced generation intercross

MAS:

Marker-assisted selection

MTA:

Marker–trait association

NAM:

Nested association mapping

NGS:

Next-generation sequencing

ns:

Nonsynonymous

ORFs:

Open reading frames

PAV:

Presence/absence variation

QTL:

Quantitative trait loci

RADSeq:

Restriction site-associated DNA sequencing

RAPD:

Random amplified polymorphic DNA

RE:

Repeat element

RF:

Restoration of fertility

RFLP:

Restriction fragment length polymorphism

RGT:

Rapid generation turnover

RIL:

Recombinant inbred line

SB:

Speed breeding

SBB:

Sequence-based breeding

Seq-BSA:

Sequencing-based bulked segregant analysis

SMD:

Sterility mosaic disease

SNP:

Single-nucleotide polymorphism

SPC:

Seed protein content

SRR:

Seed replacement rate

SSR:

Simple sequence repeat

SV:

Structural variation

TAC:

Transcript assembly contig

TGMS:

Temperature-sensitive genic male sterility

VRR:

Variety replacement rate

WGRS:

Whole-genome resequencing

References

  • Annicchiarico P, Nazzicari N, Pecetti L, Romani M, Ferrari B, Wei Y, Brummer EC (2017) GBS-based genomic selection for pea grain yield under severe terminal drought. Plant Genome 10:2

    Google Scholar 

  • Arora S, Mahato AK, Singh S, Mandal P, Bhutani S, Dutta S, Kumawat G, Singh BP, Chaudhary AK, Yadav R, Gaikwad K, Sevanthi AM, Datta S, Raje RS, Sharma TR, Singh NK (2017) A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.). PLoS ONE 12:e0179747

    PubMed  PubMed Central  Google Scholar 

  • Atlin G, Cairns GE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12:31–37

    PubMed  PubMed Central  Google Scholar 

  • Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O (2017) New strategies and tools in quantitative genetics: how to go from the phenotype to the genotype. Annu Rev Plant Biol 68:435–455

    CAS  PubMed  Google Scholar 

  • Boeven PHG, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129:1231–1245

    PubMed  Google Scholar 

  • Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539

    CAS  PubMed  Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh R, Singh D, Saxena KB, Kavi Kishor PB, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea. BMC Plant Biol 11:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Saxena RK, Gnanesh BN, Saxena KB, Byregowda M, Rathore A, KaviKishor PB, Cook DR, Varshney RK (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125:1325–1338

    PubMed  PubMed Central  Google Scholar 

  • Bohra A, Singh IP, Yadav AK, Pathak A, Soren KR, Chaturvedi SK, Nadarajan N (2015) Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeonpea. Natl Acad Sci Lett 38:13–19

    CAS  Google Scholar 

  • Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35:967–993

    CAS  PubMed  Google Scholar 

  • Bohra A, Jha A, Singh IP, Pandey G, Pareek S, Basu PS, Chaturvedi SK, Singh NP (2017a) Novel CMS lines in pigeonpea [Cajanus cajan (L.) Millspaugh] derived from cytoplasmic substitutions, their effective restoration and deployment in hybrid breeding. Crop J 5:89–94

    Google Scholar 

  • Bohra A, Pareek S, Jha R, Saxena RK, Singh IP, Pandey G et al (2017b) Modern genomic tools for pigeonpea improvement: Status and prospects. In: Varshney RK, Saxena RK, Scott J (eds) The pigeonpea genome. Springer, Cham, pp 41–54

    Google Scholar 

  • Bohra A, Jha R, Pandey G, Patil PG, Saxena RK, Singh IP, Singh D, Mishra RK, Mishra A, Singh F, Varshney RK, Singh NP (2017c) New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Front Plant Sci 8:1–15

    Google Scholar 

  • Bohra A, Bharadwaj C, Radhakrishnan T, Singh NP, Varshney RK (2019) Translational genomics and molecular breeding for enhancing precision and efficiency in crop improvement programs: some examples in legumes. Indian J Genet 79(Suppl):227–240

    CAS  Google Scholar 

  • Burns MJ, Edwards KJ, Newbury HJ, Ford-Lloyd BR, Baggot CD (2001) Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan). Mol Ecol Notes 1:283–285

    CAS  Google Scholar 

  • Carberry PS, Ranganathan R, Reddy LJ, Chauhan YS, Robertson MJ (2001) Predicting growth and development of pigeonpea: flowering response to photoperiod. Field Crop Res 69:151–162

    Google Scholar 

  • Carpenter MA, Goulden DS, Woods CJ, Thomson SJ, Kenel F, Frew TJ, Cooper RD, Timmerman-Vaughan GM (2018) Genomic selection for ascochyta blight resistance in pea. Front Plant Sci 9:1878

    PubMed  PubMed Central  Google Scholar 

  • Chauhan JS, Singh BB, Gupta S (2016) Enhancing pulses production in India through improving seed and variety replacement rates. Indian J Genet Plant Breed 76:410–419

    Google Scholar 

  • Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606

    CAS  PubMed  Google Scholar 

  • Croser JS, Pazos-Navarro M, Bennett RG et al (2016) Time to flowering of temperate pulses in vivo and generation turnover in vivo–in vitro of narrow-leaf lupin accelerated by low red to far-red ratio and high intensity in the far-red region. Plant Cell Tissue Organ Cult 127:591–599

    CAS  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    CAS  PubMed  Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res 18:153–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duhnen A, Gras A, Teyssèdre S, Romestant M, Claustres B, Daydé J, Mangin B (2017) Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy. Crop Sci 57:1–13

    Google Scholar 

  • Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney KR, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol 11:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) Food and agriculture organization of United Nations. http://faostat.fao.org

  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, Hafeez A, Hayta S, Melton RE, Steed A, Sarkar A, Carter J, Perkins L, Lord J, Tester M, Osbourn A, Moscou MJ, Nicholson P, Harwood W, Martin C, Domoney C, Uauy C, Hazard B, Wulff BBH, Hickey LT (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:2944–2963

    CAS  PubMed  Google Scholar 

  • Gnanesh BN, Bohra A, Sharma M, Byregowda M, Pande S, Wesley V, Saxena RK, Saxena KB, KaviKishor PB, Varshney RK (2011) Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Res 123:53–61

    Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BBH (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    CAS  PubMed  Google Scholar 

  • Horn R, Gupta KJ, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion 19:198–205

    CAS  PubMed  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, Xu TT, Chen N, Chi XY, Zhang ZM, Chen J (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:5479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:4.1–4.21

    Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    PubMed  Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922

    PubMed  Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Phytol 191:915–925

    CAS  PubMed  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M, Burgueño J, de los Campos G (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    PubMed  Google Scholar 

  • Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K (2016) Chloroplast genome sequence of pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes. Front Plant Sci 7:1847

    PubMed  PubMed Central  Google Scholar 

  • Kassa MT, Penmetsa RV, Carrasquilla-Garcia N, Sarma BK, Datta S, Upadhyaya HD, Varshney RK, Von Wettberg EJB, Cook DR (2012) Genetic patterns of domestication in pigeonpea (Cajanus cajan (L,) Millsp,) and wild Cajanus relatives. PLoS ONE 7:e39563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khera P, Saxena R, Sameerkumar CV, Saxena K, Varshney RK (2015) SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica 206:737–746

    CAS  Google Scholar 

  • Khoury CK, Castañeda-Alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, von der Maesen LJG, Upadhyaya HD, Ramirez-Villegas J, Jarvis A, Struik PC (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R et al (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanaus cajan L.) using Sanger and second-generation sequencing platforms. Mol Plant 5:1020–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Khan AW, Saxena RK, Garg V, Varshney RK (2016) First generation hapmap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnol J 14:1673–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra SVCR, Kishor Gaikwad K, Sharma TR, Singh NK (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet 13:84

    PubMed  PubMed Central  Google Scholar 

  • Kyu KL, Shwe T, Sameer Kumar CV (2016) Overview of pigeonpea research in Myanmar. Legume Perspect 11:41–43

    Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018a) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    CAS  PubMed  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KHM, Sutton T (2018b) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci 9:190

    PubMed  PubMed Central  Google Scholar 

  • Liu HJ, Yan J (2019) Crop genome-wide association study: a harvest of biological relevance. Plant J 97:8–18

    CAS  PubMed  Google Scholar 

  • Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    PubMed  Google Scholar 

  • Matei G, Woyann LG, Milioli AS, de Bem Oliveira I, Zdziarski AD, Zanella R, Coelho ASG, Finatto T, Benin G (2018) Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection. Mol Breed 38:117. https://doi.org/10.1007/s11032-018-0872-4

    Article  CAS  Google Scholar 

  • McPherson HG, Warrington IJ, Turnbull HL (1985) The effects of temperature and daylength on the rate of development of pigeonpea. Ann Bot 56:597–611

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Stoub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA Special Publication no. 25. CSSA, Madison, pp 29–44

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir RR, Saxena RK, Saxena KB, Upadhyaya HD, Kilian A, Cook DR, Varshney RK (2012) Whole-genome scanning for mapping determinacy in pigeonpea (Cajanus spp.). Plant Breed 132:472–478

    Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena KB, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadimpalli RG, Jarret RL, Phatak SC, Kochart G (1994) Phylogenetic relationships of the pigeonpea (Cajanus cajan) based on nuclear restriction fragment length polymorphism. Genome 36:216–223

    Google Scholar 

  • Obala J, Saxena RK, Singh V, Sameer Kumar CV, Saxena KB, Tongoona P, Sibiya J, Varshney RK (2019) Development of sequence-based markers for seed protein content in pigeonpea. Mol Gen Genom 294:57–68

    CAS  Google Scholar 

  • Odeny DA, Jayashree B, Ferguson M, Hoisington D, Crouch J, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136

    CAS  Google Scholar 

  • Odeny DA, Jayashree B, Gebhardt C, Crouch J (2009) New microsatellite markers for pigeonpea (Cajanus cajan (L.) Millsp.). BMC Res Notes 2:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panguluri SK, Janaiah J, Govil JN, Kumar PA, Sharma PC (2006) AFLP fingerprinting in pigeonpea (Cajanus cajan L. Millsp.) and its wild relatives. Genet Res Crop Evol 53:523–531

    Google Scholar 

  • Patel KA, Acharya S, Prajapati N, Patel JB (2012) Molecular identification of cytoplasmic male sterility based hybrid GTH 1 and its parents in pigeonpea. Indian J Genet 72:94–96

    CAS  Google Scholar 

  • Patil PG, Dubey J, Bohra A, Mishra RK, Saabale PR, Das A, Rathore M, Singh NP (2017a) Association mapping to discover significant marker-trait associations for resistance against Fusarium wilt variant 2 in pigeonpea [Cajanus cajan (L.) Millspaugh] using SSR markers. J Appl Genet 58:307–319

    CAS  PubMed  Google Scholar 

  • Patil PG, Bohra A, Dubey J, Saabale PR, Mishra RK, Pandey G, Das A, RathoreM Singh F, Singh NP (2017b) Genetic analysis and molecular resistance to race 2 of Fusarium wilt in pigeonpea [Cajanus cajan (L.) Millsp.]. Crop Prot 100:117–123

    Google Scholar 

  • Pazhamala LT, Shilp S, Saxena RK, Garg V, Krishnamurthy L, Verdier J, Varshney RK (2017) Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. J Exp Bot 68:2037–2054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J (2015) Breeding-assisted genomics. Curr Opin Plant Biol 24:119–124

    CAS  PubMed  Google Scholar 

  • Priyanka B, Sekhar K, Sunitha T, Reddy VD, Rao KV (2010) Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics 283:273–287

    CAS  PubMed  Google Scholar 

  • Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, Hiremath PJ, Byregowda M, Singh NK, Varshney RK (2010) The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol 10:45

    PubMed  PubMed Central  Google Scholar 

  • Ratnaparkhe MB, Gupta VS, Ven Murthy MR, Ranjekar PK (1995) Genetic fingerprinting of pigeonpea (Cajanus cajan (L.) Millsp) and its wild relatives using RAPD markers. Theor Appl Genet 91:893–898

    CAS  PubMed  Google Scholar 

  • Reddy BVS, Green JM, Bisen SS (1978) Genetic male-sterility in pigeonpea. Crop Sci 18:362–364

    Google Scholar 

  • Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:1–10

    CAS  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genome enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    PubMed  PubMed Central  Google Scholar 

  • Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan S, Jain A, Garg V, Kale S, Chitikineni A, Tripathi S, Jones E, Robbins KR, Crossa J, Varshney RK (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci Rep 8:11701

    PubMed  PubMed Central  Google Scholar 

  • Saxena KB (1996) Rapid generation turnover in short duration pigeonpea. Int Chickpea Pigeonpea Newslett 3:57–59

    Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea—A review. Trop Plant Biol 1:159–178

    Google Scholar 

  • Saxena KB (2013) A novel CMS source in pigeonpea derived from Cajanus reticulatus. Indian J Genet 73:259–263

    Google Scholar 

  • Saxena KB (2014) Temperature-sensitive male sterility system in pigeonpea. Curr Sci 107:277–281

    Google Scholar 

  • Saxena KB, Hingane AJ (2015) Male sterility systems in major field crops and their potential role in crop improvement. In: Bahadur B, Venkat Rajam M, Sahijram L, Krishnamurthy KV (eds) Plant biology and biotechnology, vol I. Plant diversity, organization function and improvement. Springer, New Delhi, pp 639–656

    Google Scholar 

  • Saxena KB, Sawargaokar SL (2014) First information on heterotic groups in pigeonpea [Cajanus cajan (L.) Millsp.]. Euphytica 200:187–196

    Google Scholar 

  • Saxena KB, Kumar RV, Srivastava N, Shiying B (2005) A cytoplasmic-nuclear male-sterility system derived from a cross between Cajanus cajanifolius and Cajanus cajan. Euphytica 145:289–294

    Google Scholar 

  • Saxena RK, Prathima C, Saxena KB, Hoisington DA, Singh NK, Varshney RK (2010a) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129:142–148

    CAS  Google Scholar 

  • Saxena KB, Sultana R, Mallikarjuna N, Saxena RK, Kumar RV, Sawargaonkar KL (2010b) Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breed 129:125–134

    Google Scholar 

  • Saxena RK, Saxena K, Varshney RK (2010c) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol Breed 26:371–380

    CAS  Google Scholar 

  • Saxena RK, Cui X, Thakur V, Walter B, Close TJ, Varshney RK (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genom 11:651–657

    CAS  Google Scholar 

  • Saxena RK, Penmetsa RV, Upadhyaya HD, Kumar A, Carrasquilla-Garcia N, Schlueter JA, Farmer A, Whaley AM, Sarma BK, May GD, Cook DR, Varshney RK (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Res 19:449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Kumar RV, Tikle AN et al (2013) ICPH 2671—the world’s first commercial food legume hybrid. Plant Breed 132:479–485

    Google Scholar 

  • Saxena RK, Von Wettberg E, Upadhyaya HD, Sanchez V, Songok S, Saxena K, Varshney RK (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9:e88568

    PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Saxena KB, Pazhamala LT, Patel K, Parupalli S, Sameerkumar CV, Varshney RK (2015) Genomics for greater efficiency in pigeonpea hybrid breeding. Front Plant Sci 6:793

    PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Kale SM, Kumar V, Parupalli S, Joshi S, Singh VK, Garg V, Das RR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Varshney RK (2017a) Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813

    PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Singh VK, Kale SM, Tathineni R, Parupalli S, Kumar V, Garg V, Das RR, Sharma M, Yamini KN, Muniswamy S, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Kavi Kishor PB, Varshney RK (2017b) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 7:1911

    PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Obala J, Sinjushin A, Sameer-Kumar CV, Saxena KB, Varshney RK (2017c) Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor Appl Genet 130:1773–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Saxena RK, Varshney RK (2017d) Use of immature seed germination and single seed descent for rapid genetic gains in pigeonpea. Plant Breed 136:954–957

    CAS  Google Scholar 

  • Saxena RK, Rathore A, Bohra A, Yadav P, Das RR, Khan AW, Singh VK, Chitikineni A, Singh IP, Sameer Kumar CV, Saxena KB, Varshney RK (2018a) Development and application of high density Axiom® Cajanus SNP Array with 56 K SNPs to understand the genome architecture of released cultivars and founder genotypes for redefining future pigeonpea breeding programs. Plant Genome 11:3

    CAS  Google Scholar 

  • Saxena RK, Patel K, Sameer Kumar CV, Tyagi K, Saxena KB, Varshney RK (2018b) Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). Theor Appl Genet 131:1605–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena KB, Saxena RK, Hickey LT, Varshney RK (2019) Can a speed breeding approach accelerate genetic gain in pigeonpea? Euphytica 215:202

    Google Scholar 

  • Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676

    CAS  PubMed  Google Scholar 

  • Silim SN, Gwata ET, Coeb R, Omanga PA (2007) Response of pigeonpea genotypes of different maturity duration to temperature and photoperiod in Kenya. Afr Crop Sci J 15:73–81

    Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G, Pal JK, Pandit A, Singh A, Rawal H, Kumar A, Prashat RG, Khare A, Yadav R, Raje RS, Singh MN, Datta S, Fakrudin B, Wanjari KB, Kansal R, Dash PK, Jain PK, Bhattacharya R, Gaikwad K, Mohapatra T, Srinivasan R, Sharma TR (2011) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Kumar V, Kale SM, Sinha P, Chitikineni A, Pazhamala LT, Garg V, Sharma M, Sameer Kumar CV, Parupalli S, Vechalapu S, Patil S, Muniswamy S, Ghanta A, Yamini KN, Dharmaraj PS, Varshney RK (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnol J 14:1183–1194

    CAS  PubMed  Google Scholar 

  • Singh NP, Dixit GP, Praharaj CS, Srivastava AK, Katiyar PK, Rathore M, Bohra A, Mishra RK, Kumar S, Kumar R (2017a) Five decades of pulses research in India. ICAR-Indian Institute of Pulses Research, Kanpur, p 494

    Google Scholar 

  • Singh VK, Khan AW, Saxena RK, Sinha P, Kale SM, Parupalli S, Kumar V, Chitikineni A, Vechalapu S, Sameer Kumar CV, Sharma M, Ghanta A, Yamini KN, Muniswamy S, Varshney RK (2017b) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnol J 15:906–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Singh VK, Suryanarayana V, Krishnamurthy L, Saxena RK, Varshney RK (2015a) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 10:e0122847

    PubMed  PubMed Central  Google Scholar 

  • Sinha P, Saxena RK, Singh VK, Varshney RK (2015b) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front Plant Sci 6:1071

    PubMed  PubMed Central  Google Scholar 

  • Sinha P, Saxena KB, Saxena RK, Singh VK, Suryanarayana V, Sameer Kumar V, Katta MAVS, Khan AW, Varshney RK (2015c) Association of nad7a gene with cytoplasmic male sterility in pigeonpea. Plant Genome 8:1–12

    CAS  Google Scholar 

  • Sivaramakrishnan S, Seetha K, Rao AN, Singh L (1997) RFLP analysis of cytoplasmic male sterile lines in pigeonpea (Cajanus cajan L. Millsp.). Euphytica 126:293–299

    Google Scholar 

  • Sivaramakrishnan S, Seetha K, Reddy LJ (2002) Diversity in selected wild and cultivated species of pigeonpea using RFLP of mtDNA. Euphytica 125:21–28

    CAS  Google Scholar 

  • Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ (2016) Crossing methods and cultivation conditions for rapid production of segregating populations in three grain Amaranth species. Front Plant Sci 7:816

    PubMed  PubMed Central  Google Scholar 

  • Tao Y, Zhao X, Mace E, Henry R, Jordan D (2019) Exploring and exploiting pan-genomics for crop improvement. Mol Plant 12:156–169

    CAS  PubMed  Google Scholar 

  • Tayeh N, Klein A, Le Paslier MC, Jacquin F, Houtin H, Rond C, Chabert-Martinello M, Magnin-Robert JB, Marget P, Aubert G, Burstin J (2015) Genomic prediction in pea: effect of marker density and training population size and composition on prediction accuracy. Front Plant Sci 6:941

    PubMed  PubMed Central  Google Scholar 

  • Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao YL, Fan G, Saxena KB, Alverson AJ, Spillane C, Town C, Varshney RK (2013) Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Res 20:485–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela H (2011) Pigeon pea: a multipurpose crop for Hawaii, March–April–May edn. Hanai’Ai/The Food Provider, Hawaii, pp 1–8

    Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30:83–89

    CAS  Google Scholar 

  • Varshney RK, Murali Mohan S, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj CH, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv S0734–9750(13):00003–00007

    Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, Kumar V, Anuradha G, Yamini KN, Zhang W, Muniswamy S, Kim JS, Penmetsa RV, von Wettberg E, Datta SK (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49:1082–1088

    CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK (2019) Towards sequence-based breeding in legumes in post-genome sequencing era. Theor Appl Genet 132:797–816

    CAS  PubMed  Google Scholar 

  • Voss-Fels KP, Herzog E, Dreisigacker S, Sukurmaran S, Watson A, Frisch M, Hayes BJ, Hickey LT (2018) SpeedGS to accelerate genetic gain in spring wheat. In: Miedaner T, Korzun V (eds) Applications of genetic and genomic research in cereals, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  • Wallace JG, Rodgers-Melnick E, Buckler ES (2018) On the road to Breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu Rev Genet 52:421–444

    CAS  PubMed  Google Scholar 

  • Yadav P, Saxena KB, Hingane A, Kumar C, Kandalkar VS, Varshney RK, Saxena RK (2019) An “Axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genom 20:235

    Google Scholar 

  • Yang S, Pang W, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology (DArT). Theor Appl Genet 113:585–595

    CAS  PubMed  Google Scholar 

  • Yang SY, Saxena RK, Kulwal PL, Ash GJ, Dubey A, Harpe JDI, Upadhyaya HD, Gothalwal R, Kilian A, Varshney RK (2011) The first genetic map of pigeonpea based on diversity arrays technology (DArT) markers. J Genet 90:103–109

    PubMed  Google Scholar 

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112:15624–15629

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

AB acknowledges support from Centre for Agricultural Bioinformatics (CABin: AGENIASRICOP201501000047) scheme of Indian Council of Agricultural Research (ICAR), New Delhi. Authors are also thankful for the Department of Agriculture Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India, Ministry of Agriculture, Government of Karnataka for funding various pigeonpea research projects. This work has been undertaken as part of the CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC). ICRISAT is a member of CGIAR Consortium.

Author information

Authors and Affiliations

Authors

Contributions

AB and RKS conceived and outlined the review. AB, RKS and RKV wrote the manuscript. KBS contributed special sections. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Abhishek Bohra or Rachit K. Saxena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Henry T. Nguyen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, A., Saxena, K.B., Varshney, R.K. et al. Genomics-assisted breeding for pigeonpea improvement. Theor Appl Genet 133, 1721–1737 (2020). https://doi.org/10.1007/s00122-020-03563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03563-7

Keywords

Navigation