Advertisement

Identification and fine mapping of qSB.A09, a major QTL that controls shoot branching in Brassica rapa ssp. chinensis Makino

  • Pan Li
  • Tongbing Su
  • Bin Zhang
  • Peirong Li
  • Xiaoyun Xin
  • Xiaozhen Yue
  • Yunyun Cao
  • Weihong Wang
  • Xiuyun Zhao
  • Yangjun Yu
  • Deshuang Zhang
  • Shuancang YuEmail author
  • Fenglan ZhangEmail author
Original Article

Abstract

Key message

QTL mapping plus bulked segregant analysis revealed a major QTL for shoot branching in non-heading Chinese cabbage. The candidate gene was then identified using sequence alignment and expression analysis.

Abstract

Shoot branching is a complex quantitative trait that contributes to plant architecture and ultimately yield. Although many studies have examined branching in grain crops, the genetic control of shoot branching in vegetable crops such as Brassica rapa L. ssp. chinensis remains poorly understood. In this study, we used bulked segregant analysis (BSA) of an F2 population to detect a major quantitative trait locus (QTL) for shoot branching, designated shoot branching 9 (qSB.A09) on the long arm of chromosome A09 in Brassica rapa L. ssp. chinensis. In addition, traditional QTL mapping of the F2 population revealed six QTLs in different regions. Of these, the mapping region on chromosome A09 was consistent with the results of BSA-seq analysis, as well as being stable over the 2-year study period, explaining 19.37% and 22.18% of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants, qSB.A09 was further delimited to a 127-kb genomic region harboring 28 annotated genes. We subsequently identified the GRAS transcription factor gene Bra007056 as a potential candidate gene; Bra007056 is an ortholog of MONOCULM 1 (MOC1), the key gene that controls tillering in rice. Quantitative RT-PCR further revealed that expression of Bra007056 was positively correlated with the shoot branching phenotype. Furthermore, an insertion/deletion marker specific to Bra007056 co-segregated with the shoot branching trait in the F2 populations. Overall, these results provide the basis for elucidating the molecular mechanism of shoot branching in Brassica rapa ssp. chinensis Makino.

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 31801873), the Outstanding Scientists Training Program, BAAFS (JKZX201906), the Beijing Academy of Agricultural and Forestry Sciences (KJCX20180204), the China Postdoctoral Science Foundation (2019T120066), the Beijing Postdoctoral Research Foundation (2017-ZZ-085) and the Earmarked Fund for China Agriculture Research System (CARS-23-A-05).

Author contribution statement

SY, TS, PL, and FZ designed the experiments. PL, TS, BZ, XX, WW, YY, and DZ carried out the experiments. PL, SY, and TS performed data analysis and wrote the paper. TS, SY, and XZ provided guidance for phenotypic assays, SY, TS, and PRL assisted in genetic analysis. All authors discussed the results and commented on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

122_2020_3531_MOESM1_ESM.xlsx (41 kb)
Supplementary material 1 (XLSX 41 kb)
122_2020_3531_MOESM2_ESM.pdf (480 kb)
Supplementary material 2 (PDF 479 kb)

References

  1. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aguilar-Martínez JA, Poza-Carrion C, Cubas P (2007) Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alder A, Holdermann I, Beyer P, Al-Babili S (2008) Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem J 416:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  4. Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493PubMedPubMedCentralCrossRefGoogle Scholar
  5. Cao XW, Cui HM, Li J, Xiong AS, Hou XL, Li Y (2016) Heritability and gene effects for tiller number and leaf number in non-heading Chinese cabbage using joint segregation analysis. Sci Hortic 203:199–206CrossRefGoogle Scholar
  6. Cao XW, Cui HM, Yao Y, Xiong AS, Hou XL, Li Y (2017) Effects of endogenous hormones on variation of shoot branching in a variety of non-heading Chinese cabbage and related gene expression. Plant Biol 60:343–351CrossRefGoogle Scholar
  7. Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24:159–169PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney J, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207PubMedCrossRefPubMedCentralGoogle Scholar
  9. Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A (2014) Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Int J Mol Sci 34:1563–1578Google Scholar
  10. Dai M, Thompson R, Maher C, Contreras R, Kaplan M, Markovitz D, Omenn G, Meng F (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genom 11(Suppl 4):S7CrossRefGoogle Scholar
  11. Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759PubMedPubMedCentralCrossRefGoogle Scholar
  12. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  13. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Bio 12:211–221CrossRefGoogle Scholar
  14. Fulton TM, Beck Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894CrossRefGoogle Scholar
  15. Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefPubMedCentralGoogle Scholar
  17. Greb T, Clarenz O, Schäfer E, Müller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hanania U, Velcheva M, Sahar N, Perl A (2004) An improved method for isolating high-quality DNA from Vitis vinifera nuclei. Plant Mol Biol Rep 22:173–177CrossRefGoogle Scholar
  19. Hayward A, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiol 151:400–412PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hou XL (2003) Advances in breeding of non-heading Chinese cabbage. J Nanjing Agric Univ 26:111–115 (in Chinese) Google Scholar
  21. Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched 1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935PubMedPubMedCentralGoogle Scholar
  22. Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48PubMedCrossRefGoogle Scholar
  23. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  24. Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8:541–545PubMedCrossRefGoogle Scholar
  25. Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant, Cell Environ 32:694–703CrossRefGoogle Scholar
  26. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  27. Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621PubMedCrossRefGoogle Scholar
  28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAM tools. Bioinformatics 25:2078–2079PubMedPubMedCentralCrossRefGoogle Scholar
  29. Li H, Zhang L, Hu J, Zhang F, Chen B, Xu K, Gao G, Li H, Zhang T, Li Z, Wu X (2017) Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassicanapus L.). Front Plant Sci 8:1054.  https://doi.org/10.3389/fpls.2017.01054 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li P, Zhang B, Su T, Li P, Xin X, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F (2018) BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic arabidopsis. Front Plant Sci 9:1792.  https://doi.org/10.3389/fpls.2018.01792 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF 27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–638PubMedCrossRefPubMedCentralGoogle Scholar
  34. Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J 67:701–714PubMedCrossRefPubMedCentralGoogle Scholar
  35. Mcsteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374PubMedCrossRefGoogle Scholar
  36. Parida SK, Srivastava R, Bajaj D (2017) A genome-wide m QTL-seq scan identifies potential molecular signatures regulating plant height in Chickpea. Plant Mol Biol Rep 35:1–14CrossRefGoogle Scholar
  37. Sato Y, Hong SK, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A rice homeobox gene OSH1 is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci USA 93:8117–8122PubMedCrossRefPubMedCentralGoogle Scholar
  38. Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290–295PubMedCrossRefPubMedCentralGoogle Scholar
  39. Shao G, Lu Z, Xiong J, Wang B, Jing Y, Meng X, Liu G, Ma H, Liang Y, Chen F, Wang Y, Li J, Yu H (2019) Tiller bud formation regulators MOC3 and MOC1 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant.  https://doi.org/10.1016/j.molp.2019.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shen Y, Yang Y, Xu E, Ge X, Xiang Y, Li Z (2018) Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet 131:67–78PubMedCrossRefPubMedCentralGoogle Scholar
  41. Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413PubMedPubMedCentralCrossRefGoogle Scholar
  42. Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin–cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435PubMedCrossRefPubMedCentralGoogle Scholar
  43. Su T, Li P, Yang J, Sui G, Yu Y, Zhang D, Zhao X, Wang W, Wen C, Yu S, Zhang F (2018a) Development of cost-effective single nucleotide polymorphism marker assays for genetic diversity analysis in Brassica rapa. Mol Breed 38:42CrossRefGoogle Scholar
  44. Su TB, Wang WH, Li PR, Zhang B, Li P, Xin XY, Sun HH, Yu YJ, Zhang DS, Zhao XY, Wen CL, Zhou G, Wang YT, Zheng HK, Yu SC, Zhang FL (2018b) A genomic variation map provides insights into the genetic basis of spring Chinese Cabbage (Brassica rapa ssp. pekinensis) selection. Mol Plant 11:1360–1376PubMedCrossRefPubMedCentralGoogle Scholar
  45. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of dna from two bulked populations. Plant J 74:174–183PubMedCrossRefPubMedCentralGoogle Scholar
  46. Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520PubMedCrossRefGoogle Scholar
  47. Van Ooijen JW (2004) MapQTL version 5.0, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, WageningenGoogle Scholar
  48. Van Ooijen JW (2006) JoinMap 4.0, software for the calculation of genetic linkage maps in experimental populations. Kyazama BV, WageningenGoogle Scholar
  49. Voorrips RE (2002) MapChart, software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  50. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279PubMedCrossRefGoogle Scholar
  51. Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039PubMedCrossRefGoogle Scholar
  52. Wang X, Wu J, Liang J, Cheng F, Wang X (2015) Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources. Database bav093:1-8Google Scholar
  53. Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q (2016) Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 6:38493PubMedPubMedCentralCrossRefGoogle Scholar
  54. Zeng GP, Cao SC (1996) Genetic studies on some important characters of non-heading Chinese cabbage I: genetic analysis of 11 qualitative traits. J Nanjing Agric Univ 85:606–611 (in Chinese) Google Scholar
  55. Zeng GP, Cao SC (1998) Genetic studies on some important characters of non-heading Chinese cabbage II: analysis of genic effects and heritability for 15 agronomic characters. J Nanjing Agric Univ 21:31–35 (in Chinese) Google Scholar
  56. Zhang C, Liu J, Zhao T, Gomez A, Li C, Yu C, Li H, Lin J, Yang Y, Liu B, Lin C (2016) A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiol 171:334–343PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Beijing Vegetable Research Center (BVRC)Beijing Academy of Agriculture and Forestry Science (BAAFS)BeijingChina
  2. 2.Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of AgricultureBeijingChina
  3. 3.Beijing Key Laboratory of Vegetable Germplasm ImprovementBeijingChina

Personalised recommendations