Improvement of nutrient use efficiency in rice: current toolbox and future perspectives

  • Zhihua Zhang
  • Shaopei Gao
  • Chengcai ChuEmail author


Modern agriculture relies heavily on chemical fertilizers, especially in terms of cereal production. The excess application of fertilizers not only increases production cost, but also causes severe environmental problems. As one of the major cereal crops, rice (Oryza sativa L.) provides the staple food for nearly half of population worldwide, especially in developing countries. Therefore, improving rice yield is always the priority for rice breeding. Macronutrients, especially nitrogen (N) and phosphorus (P), are two most important players for the grain yield of rice. However, with economic development and improved living standard, improving nutritional quality such as micronutrient contents in grains has become a new goal in order to solve the “hidden hunger.” Micronutrients, such as iron (Fe), zinc (Zn), and selenium (Se), are critical nutritional elements for human health. Therefore, breeding the rice varieties with improved nutrient use efficiency (NUE) is thought to be one of the most feasible ways to increase both grain yield and nutritional quality with limited fertilizer input. In this review, we summarized the progresses in molecular dissection of genes for NUE by reverse genetics on macronutrients (N and P) and micronutrients (Fe, Zn, and Se), exploring natural variations for improving NUE in rice; and also, the current genetic toolbox and future perspectives for improving rice NUE are discussed.


Author contribution statement

ZZ: writing-original draft preparation. SG: writing-reviewing and editing. CC: supervision, writing-reviewing and editing.


Research is funded by the grants from National Natural Science Foundation of China (31430063) and the National Key Research and Development Program of China (2016YFD0101801).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Aberg B (1947) On the mechanism of the toxic action of chlorates and some related substances upon young wheat plants. Annu Rev Agri Coll Swed 15:37–107Google Scholar
  2. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809PubMedCrossRefGoogle Scholar
  3. Anis GB, Zhang Y, Islam A, Zhang Y, Cao Y, Wu W, Cao L, Cheng S (2019) RDWN6 XB, a major quantitative trait locus positively enhances root system architecture under nitrogen deficiency in rice. BMC Plant Biol 19:12PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aoyama T, Kobayashi T, Takahashi M, Nagasaka S, Usuda K, Kakei Y, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2009) OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681–692PubMedPubMedCentralCrossRefGoogle Scholar
  5. Araki R, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci 56:295–302CrossRefGoogle Scholar
  6. Araus V, Vidal EA, Puelma T, Alamos S, Mieulet D, Guiderdoni E, Gutierrez RA (2016) Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. Plant Physiol 171:1523–1532PubMedPubMedCentralGoogle Scholar
  7. Aung M, Masuda H, Kobayashi T, Nakanishi H, Yamakawa T, Nishizawa N (2013) Iron biofortification of Myanmar rice. Front Plant Sci 4:158PubMedPubMedCentralCrossRefGoogle Scholar
  8. Banakar R, Alvarez Fernandez A, Diaz-Benito P, Abadia J, Capell T, Christou P (2017) Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium. J Exp Bot 68:4983–4995PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bao A, Liang Z, Zhao Z, Cai H (2015) Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int J Mol Sci 16:9037PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bashir K, Inoue H, Nagasaka S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. J Biol Chem 281:32395–32402PubMedCrossRefGoogle Scholar
  11. Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil 361:189–201CrossRefGoogle Scholar
  12. Bashir K, Takahashi R, Akhtar S, Ishimaru Y, Nakanishi H, Nishizawa NK (2013) The knockdown of OsVIT2 and MIT affects iron localization in rice seed. Rice 6:31PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boonyaves K, Wu T, Gruissem W, Bhullar NK (2017) Enhanced grain iron levels in rice expressing an IRON-REGULATED METAL TRANSPORTER, NICOTIANAMINE SYNTHASE, and FERRITIN gene cassette. Front Plant Sci 8:130PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bouis HE, Eozenou P, Rahman A (2011) Food prices, household income, and resource allocation: socioeconomic perspectives on their effects on dietary quality and nutritional status. Food Nutr Bull 32:S14–S23PubMedCrossRefGoogle Scholar
  15. Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682PubMedCrossRefGoogle Scholar
  16. Chang M, Gu M, Xia Y, Dai X, Dai C, Zhang J, Wang S, Qu H, Yamaji N, Ma J, Xu G (2019) OsPHT1;3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes. Plant Physiol 179:656–670PubMedCrossRefGoogle Scholar
  17. Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2:15195PubMedCrossRefGoogle Scholar
  18. Chen C, Gao M, Liu J, Zhu H (2007) Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiol 145:1619–1628PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen C, Ané J-M, Zhu H (2008) OsIPD3, an ortholog of the Medicago truncatula DMI3 interacting protein IPD3, is required for mycorrhizal symbiosis in rice. New Phytol 180:311–315PubMedCrossRefGoogle Scholar
  20. Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P (2011) OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157:269–278PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J 15:1273–1283PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen H, Xu N, Wu Q, Yu B, Chu Y, Li X, Huang J, Jin L (2018) OsMADS27 regulates the root development in a NO3 -dependent manner and modulates the salt tolerance in rice (Oryza sativa L.). Plant Sci 277:20–32PubMedCrossRefGoogle Scholar
  23. Chietera G, Chardon F (2014) Natural variation as a tool to investigate nutrient use efficiency in plants. In: Hawkesford MJ, Kopriva S, De Kok LJ (eds) Nutrient use efficiency in plants: concepts and approaches. Springer, Cham, pp 29–50Google Scholar
  24. Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S (2011) Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol 156:1202–1216PubMedPubMedCentralCrossRefGoogle Scholar
  25. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  26. Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85:517–547PubMedCrossRefGoogle Scholar
  27. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dai X, Wang Y, Yang A, Zhang W (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dai X, Wang Y, Zhang W (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67:947–960PubMedCrossRefGoogle Scholar
  30. Davidson H, Shrestha R, Cornulier T, Douglas A, Travis T, Johnson D, Price AH (2019) Spatial effects and GWA mapping of root colonization assessed in the interaction between the rice diversity panel 1 and an arbuscular mycorrhizal fungus. Front Plant Sci 10:633PubMedPubMedCentralCrossRefGoogle Scholar
  31. de Magalhães JV, Alves VMC, de Novais RF, Mosquim PR, Magalhães JR, Filho AFCB, Hubert DM (1998) Nitrate uptake by corn under increasing periods of phosphorus starvation. J Plant Nutr 21:1753–1763CrossRefGoogle Scholar
  32. Development Initiatives (2018) 2018 global nutrition report: shining a light to spur action on nutrition. Development Initiatives, BristolGoogle Scholar
  33. Drechsler N, Courty P-E, Brulé D, Kunze R (2018) Identification of arbuscular mycorrhiza-inducible Nitrate Transporter 1/Peptide Transporter Family (NPF) genes in rice. Mycorrhiza 28:93–100PubMedCrossRefGoogle Scholar
  34. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015) Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2:15203PubMedCrossRefGoogle Scholar
  35. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:E911–E920PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fageria VD (2001) Nutrient interactions in crop plants. J Plant Nutr 24:1269–1290CrossRefGoogle Scholar
  37. Fan X, Xie D, Chen J, Lu H, Xu Y, Ma C, Xu G (2014) Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci 227:1–11PubMedCrossRefGoogle Scholar
  38. Fan X, Feng H, Tan Y, Xu Y, Miao Q, Xu G (2016a) A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol 58:590–599PubMedCrossRefGoogle Scholar
  39. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016b) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci U S A 113:7118–7123PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, Xu X, Zhang M (2013) Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol J 11:446–458PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fang Z, Bai G, Huang W, Wang Z, Wang X, Zhang M (2017) The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front Plant Sci 8:12Google Scholar
  42. Feng H, Li B, Zhi Y, Chen J, Li R, Xia X, Xu G, Fan X (2017) Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Rep 36:1287–1296PubMedCrossRefGoogle Scholar
  43. Ferreira LM, de Souza VM, Tavares OCH, Zonta E, Santa-Catarina C, de Souza SR, Fernandes MS, Santos LA (2015) OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep 9:221–229CrossRefGoogle Scholar
  44. Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T (2013) Cytosolic glutamine synthetase1;2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol 54:934–943PubMedCrossRefGoogle Scholar
  45. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  46. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539PubMedCrossRefGoogle Scholar
  47. Gao S, Xiao Y, Xu F, Gao X, Cao S, Zhang F, Wang G, Sanders D, Chu C (2019a) Cytokinin-dependent regulatory module underlies the maintenance of zinc nutrition in rice. New Phytol 224:202–215PubMedCrossRefGoogle Scholar
  48. Gao Z, Wang Y, Chen G, Zhang A, Yang S, Shang L, Wang D, Ruan B, Liu C, Jiang H, Dong G, Zhu L, Hu J, Zhang G, Zeng D, Guo L, Xu G, Teng S, Harberd NP, Qian Q (2019b) The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun 10:5207PubMedPubMedCentralCrossRefGoogle Scholar
  49. Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92PubMedCrossRefGoogle Scholar
  50. Gilbert N (2009) The disappearing nutrient. Nature 461:716–718PubMedCrossRefGoogle Scholar
  51. Gobbato E, Marsh John F, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, Mysore Kirankumar S, Dénarié J, Schultze M, Oldroyd Giles ED (2012) A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241PubMedCrossRefGoogle Scholar
  52. González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512PubMedPubMedCentralCrossRefGoogle Scholar
  53. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823PubMedCrossRefGoogle Scholar
  54. Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, Xu G (2017) Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. J Exp Bot 68:3603–3615PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guerinot ML (2000) The ZIP family of metal transporters. BBA-Biomembranes 1465:190–198PubMedCrossRefGoogle Scholar
  56. Guo M, Ruan W, Li C, Huang F, Zeng M, Liu Y, Yu Y, Ding X, Wu Y, Wu Z, Mao C, Yi K, Wu P, Mo X (2015) Integrative comparison of the role of the PHOSPHATE RESPONSE1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168:1762–1776PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U (2008) Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U (2012) The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–920PubMedCrossRefGoogle Scholar
  59. Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, Carbonnel S, Mansfield C, Yang S-Y, Nadal M, Acosta I, Takano M, Jiao W-B, Schneeberger K, Kelly KA, Paszkowski U (2015) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–1524PubMedCrossRefGoogle Scholar
  60. Hajiboland R (2012) Effect of micronutrient deficiencies on plants stress responses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 283–329CrossRefGoogle Scholar
  61. Heuer S, Lu X, Chin JH, Tanaka JP, Kanamori H, Matsumoto T, De Leon T, Ulat VJ, Ismail AM, Yano M, Wissuwa M (2009) Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure. Plant Biotechnol J 7:456–471PubMedCrossRefGoogle Scholar
  62. Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167PubMedCrossRefGoogle Scholar
  63. Hiruma K, Gerlach N, Sacristán S, Nakano Ryohei T, Hacquard S, Kracher B, Neumann U, Ramírez D, Bucher M, O’Connell Richard J, Schulze-Lefert P (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–474PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM (2006) Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct Plant Biol 33:153–163CrossRefGoogle Scholar
  65. Hu B, Chu C (2017) Node-based transporter: switching phosphorus distribution. Nat Plants 3:2Google Scholar
  66. Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C (2011) LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice. Plant Physiol 156:1101–1115PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hu S, Zeng D, Su Y, Shi Z, Ye W, Dong G, Zhu L, Hu J, Qian Q, Guo L (2012) QTL analysis of nitrogen content of plant shoot under two nitrogen conditions in rice (Oryza sativa L.). Aust J Crop Sci 6:1737–1744Google Scholar
  68. Hu B, Wang W, Deng K, Li H, Zhang Z, Zhang L, Chu C (2015a) MicroRNA399 is involved in multiple nutrient starvation responses in rice. Front Plant Sci 6:188PubMedPubMedCentralGoogle Scholar
  69. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L, Chu C (2015b) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47:834–838PubMedCrossRefGoogle Scholar
  70. Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015c) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465PubMedCrossRefGoogle Scholar
  71. Hu R, Qiu D, Chen Y, Miller AJ, Fan X, Pan X, Zhang M (2016) Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. Front Plant Sci 7:1529PubMedPubMedCentralGoogle Scholar
  72. Hu A, Che J, Shao J, Yokosho K, Zhao X, Shen R, Ma J (2018) Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant Soil 423:317–325CrossRefGoogle Scholar
  73. Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y, Li A, Gao X, Liu L, Qian Y, Huang X, Yu F, Kang S, Wang Y, Xie J, Cao S, Zhang L, Wang Y, Xie Q, Kopriva S, Chu C (2019) Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants 5:401–413PubMedCrossRefGoogle Scholar
  74. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497PubMedCrossRefGoogle Scholar
  75. Huang W, Bai G, Wang J, Zhu W, Zeng Q, Lu K, Sun S, Fang Z (2018) Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front Plant Sci 9:12CrossRefGoogle Scholar
  76. Huang S, Liang Z, Chen S, Sun H, Fan X, Wang C, Xu G, Zhang Y (2019) A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. Plant Physiol 180:882–895PubMedCrossRefGoogle Scholar
  77. Inoue H, Takahashi M, Kobayashi T, Suzuki M, Nakanishi H, Mori S, Nishizawa NK (2008) Identification and localisation of the rice nicotianamine aminotransferase gene OsNAAT1 expression suggests the site of phytosiderophore synthesis in rice. Plant Mol Biol 66:193–203PubMedCrossRefGoogle Scholar
  78. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y, Suzuki K, Nakazono M, Nakanishi H, Mori S, Nishizawa NK (2009) Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470–3479PubMedCrossRefGoogle Scholar
  79. Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214PubMedCrossRefGoogle Scholar
  80. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346PubMedCrossRefGoogle Scholar
  81. Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915PubMedCrossRefGoogle Scholar
  82. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390PubMedCrossRefGoogle Scholar
  83. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286PubMedPubMedCentralCrossRefGoogle Scholar
  84. Iwamoto M, Tagiri A (2016) MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice. Plant J 85:466–477PubMedCrossRefGoogle Scholar
  85. Iwamoto M, Higo K, Takano M (2009) Circadian clock- and phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice. Plant Cell Environ 32:592–603PubMedCrossRefGoogle Scholar
  86. James D, Borphukan B, Fartyal D, Ram B, Singh J, Manna M, Sheri V, Panditi V, Yadav R, Achary VMM, Reddy MK (2018) Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): impact on tolerance to abiotic stresses. Front Plant Sci 9:786PubMedPubMedCentralCrossRefGoogle Scholar
  87. Jeong K, Mattes N, Catausan S, Chin JH, Paszkowski U, Heuer S (2015) Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice. J Integr Plant Biol 57:969–979PubMedCrossRefGoogle Scholar
  88. Jewel ZA, Ali J, Mahender A, Hernandez J, Pang Y, Li Z (2019) Identification of quantitative trait loci associated with nutrient use efficiency traits, using SNP markers in an early backcross population of rice (Oryza sativa L.). Int J Mol Sci 20:900PubMedCentralCrossRefPubMedGoogle Scholar
  89. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175PubMedPubMedCentralCrossRefGoogle Scholar
  90. Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476PubMedPubMedCentralCrossRefGoogle Scholar
  91. Kakei Y, Ishimaru Y, Kobayashi T, Yamakawa T, Nakanishi H, Nishizawa NK (2012) OsYSL16 plays a role in the allocation of iron. Plant Mol Biol 79:583–594PubMedPubMedCentralCrossRefGoogle Scholar
  92. Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009) Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed Sci 59:237–243CrossRefGoogle Scholar
  93. Kavitha PG, Kuruvilla S, Mathew MK (2015) Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem 97:165–174CrossRefGoogle Scholar
  94. Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A (2014) Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26:1480–1496PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kirk GJ, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kobayashi T, Nakayama Y, Itai RN, Nakanishi H, Yoshihara T, Mori S, Nishizawa NK (2003) Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J 36:780–793PubMedCrossRefGoogle Scholar
  97. Kobayashi T, Ogo Y, Itai RN, Nakanishi H, Takahashi M, Mori S, Nishizawa NK (2007) The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proc Natl Acad Sci U S A 104:19150–19155PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kobayashi T, Itai RN, Ogo Y, Kakei Y, Nakanishi H, Takahashi M, Nishizawa NK (2009) The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J 60:948–961PubMedCrossRefGoogle Scholar
  99. Koegel S, Mieulet D, Baday S, Chatagnier O, Lehmann MF, Wiemken A, Boller T, Wipf D, Bernèche S, Guiderdoni E, Courty P-E (2017) Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza 27:695–708PubMedCrossRefGoogle Scholar
  100. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424PubMedCrossRefGoogle Scholar
  101. Kopriva S, Chu C (2018) Are we ready to improve phosphorus homeostasis in rice? J Exp Bot 69:3515–3522PubMedCrossRefGoogle Scholar
  102. Koprivova A, Suter M, den Camp RO, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221PubMedCrossRefGoogle Scholar
  104. Landrein B, Formosa-Jordan P, Malivert A, Schuster C, Melnyk CW, Yang W, Turnbull C, Meyerowitz EM, Locke JCW, Jönsson H (2018) Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins. Proc Natl Acad Sci U S A 115:1382–1387PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416PubMedCrossRefGoogle Scholar
  106. Lee S, Kim YY, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009a) Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol 150:786–800PubMedPubMedCentralCrossRefGoogle Scholar
  108. Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009b) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019PubMedPubMedCentralCrossRefGoogle Scholar
  109. Lee S, Jeong HJ, Kim SA, Lee J, Guerinot ML, An G (2010a) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517PubMedCrossRefGoogle Scholar
  110. Lee S, Kim SA, Lee J, Guerinot ML, An G (2010b) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Mol Cells 29:551–558PubMedCrossRefGoogle Scholar
  111. Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H, Nishizawa NK, An G (2011) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol J 9:865–873PubMedCrossRefGoogle Scholar
  112. Lee S, Ryoo N, Jeon JS, Guerinot ML, An G (2012) Activation of rice Yellow Stripe1-Like 16 (OsYSL16) enhances iron efficiency. Mol Cells 33:117–126PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet E-P, Ané J-M, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  114. Li B, Merrick M, Li S, Li H, Zhu S, Shi W, Su Y (2009a) Molecular basis and regulation of ammonium transporter in rice. Rice Sci 16:314–322CrossRefGoogle Scholar
  115. Li J, Xie Y, Dai A, Liu L, Li Z (2009b) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183PubMedCrossRefGoogle Scholar
  116. Li Y, Ouyang J, Wang Y, Hu R, Xia K, Duan J, Wang Y, Tsay Y, Zhang M (2015a) Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. Sci Rep 5:9635PubMedPubMedCentralCrossRefGoogle Scholar
  117. Li Y, Zhang J, Zhang X, Fan H, Gu M, Qu H, Xu G (2015b) Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Sci 230:23–32PubMedCrossRefGoogle Scholar
  118. Li C, Tang Z, Wei J, Qu H, Xie Y, Xu G (2016a) The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J Genet Genomics 43:639–649PubMedCrossRefGoogle Scholar
  119. Li X, Xia K, Liang Z, Chen K, Gao C, Zhang M (2016b) MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds. Sci Rep 6:32158PubMedPubMedCentralCrossRefGoogle Scholar
  120. Li X, Zeng R, Liao H (2016c) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58:193–202PubMedCrossRefGoogle Scholar
  121. Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot 68:2477–2488PubMedCrossRefGoogle Scholar
  122. Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd NP, Fu X (2018) Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560:595–600PubMedPubMedCentralCrossRefGoogle Scholar
  123. Liang C, Chu C (2015) Towards understanding abscisic acid-mediated leaf senescence. Sci China Life Sci 58:506–508PubMedCrossRefGoogle Scholar
  124. Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 111:10013–10018PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lin C, Koh S, Stacey G, Yu S, Lin T, Tsay Y (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388PubMedPubMedCentralCrossRefGoogle Scholar
  126. Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M (2010) Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol 51:2119–2131PubMedCrossRefGoogle Scholar
  127. Liu Z, Zhu C, Jiang Y, Tian Y, Yu J, An H, Tang W, Sun J, Tang J, Chen G, Zhai H, Wang C, Wan J (2016) Association mapping and genetic dissection of nitrogen use efficiency-related traits in rice (Oryza sativa L.). Funct Integr Genomics 16:323–333PubMedCrossRefGoogle Scholar
  128. Liu X, Feng S, Zhang B, Wang M, Cao H, Rono JK, Chen X, Yang Z (2019) OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19:16PubMedPubMedCentralCrossRefGoogle Scholar
  129. López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123PubMedCrossRefGoogle Scholar
  130. Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310PubMedCrossRefGoogle Scholar
  131. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedPubMedCentralCrossRefGoogle Scholar
  132. Luo B, Chen J, Zhu L, Liu S, Li B, Lu H, Ye G, Xu G, Fan X (2018) Overexpression of a high-affinity nitrate transporter OsNRT2.1 increases yield and manganese accumulation in rice under alternating wet and dry condition. Front Plant Sci 9:12CrossRefGoogle Scholar
  133. Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P (2014) SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26:1586–1597PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ma J, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115–119CrossRefGoogle Scholar
  135. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  136. Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543PubMedPubMedCentralCrossRefGoogle Scholar
  137. Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170PubMedCrossRefGoogle Scholar
  138. Messinese E, Mun J-H, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono J-J, Cook DR, Ané J-M (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant-Microbe Interact 20:912–921PubMedCrossRefGoogle Scholar
  139. Ming F, Zheng X, Mi G, He P, Zhu L, Zhang F (2000) Identification of quantitative trait loci affecting tolerance to low phosphorus in rice (Oryza Sativa L.). Chin Sci Bull 45:520CrossRefGoogle Scholar
  140. Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GED, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci U S A 101:4701–4705PubMedPubMedCentralCrossRefGoogle Scholar
  141. Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234PubMedCrossRefGoogle Scholar
  142. Nakandalage N, Seneweera S (2018) Chapter 12—micronutrients use efficiency of crop-plants under changing climate. In: Hossain MA, Kamiya T, Burritt DJ, Phan Tran L-S, Fujiwara T (eds) Plant micronutrient use efficiency. Academic Press, Cambridge, pp 209–224CrossRefGoogle Scholar
  143. Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52:464–469CrossRefGoogle Scholar
  144. Nawaz Z, Kakar KU, Li X, Li S, Zhang B, Shou H, Shu Q (2015) Genome-wide association mapping of quantitative trait loci (QTLs) for contents of eight elements in brown rice (Oryza sativa L.). J Agric Food Chem 63:8008–8016PubMedCrossRefGoogle Scholar
  145. Nguyen HTT, Dang DT, Van Pham C, Bertin P (2016) QTL mapping for nitrogen use efficiency and related physiological and agronomical traits during the vegetative phase in rice under hydroponics. Euphytica 212:473–500CrossRefGoogle Scholar
  146. Ni JJ, Wu P, Senadhira D, Huang N (1998) Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:1361–1369CrossRefGoogle Scholar
  147. Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn-nicotianamine and Fe-2′-Deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.). Plant Cell Physiol 53:381–390PubMedCrossRefGoogle Scholar
  148. Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153CrossRefGoogle Scholar
  149. Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, Tarpley L, Eizenga GC, McGrath SP, Zhao F-J, Islam MR, Islam S, Duan G, Zhu Y, Salt DE, Meharg AA, Price AH (2014) Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS ONE 9:e89685–e89685PubMedPubMedCentralCrossRefGoogle Scholar
  150. Obara M, Kajiura M, Fukuta Y, Yano M, Hayashi M, Yamaya T, Sato T (2001) Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). J Exp Bot 52:1209–1217PubMedGoogle Scholar
  151. Obara M, Takeda T, Hayakawa T, Yamaya T (2011) Mapping quantitative trait loci controlling root length in rice seedlings grown with low or sufficient supply using backcross recombinant lines derived from a cross between Oryza sativa L. and Oryza glaberrima Steud. Soil Sci Plant Nutr 57:80–92CrossRefGoogle Scholar
  152. Ogawa S, Selvaraj MG, Fernando AJ, Lorieux M, Ishitani M, McCouch S, Arbelaez JD (2014a) N- and P-mediated seminal root elongation response in rice seedlings. Plant Soil 375:303–315CrossRefGoogle Scholar
  153. Ogawa S, Valencia M, Ishitani M, Selvaraj M (2014b) Root system architecture variation in response to different NH4 + concentrations and its association with nitrogen-deficient tolerance traits in rice. Acta Physiol Plant 36:2361–2372CrossRefGoogle Scholar
  154. Ogawa S, Valencia MO, Lorieux M, Arbelaez JD, McCouch S, Ishitani M, Selvaraj MG (2016) Identification of QTLs associated with agronomic performance under nitrogen-deficient conditions using chromosome segment substitution lines of a wild rice relative, Oryza rufipogon. Acta Physiol Plant 38:103CrossRefGoogle Scholar
  155. Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878PubMedCrossRefGoogle Scholar
  156. Ogo Y, Nakanishi Itai R, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366–377PubMedCrossRefGoogle Scholar
  157. Ogo Y, Kobayashi T, Nakanishi Itai R, Nakanishi H, Kakei Y, Takahashi M, Toki S, Mori S, Nishizawa NK (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417PubMedCrossRefGoogle Scholar
  158. Ogo Y, Itai RN, Kobayashi T, Aung MS, Nakanishi H, Nishizawa NK (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol 75:593–605PubMedCrossRefGoogle Scholar
  159. Oostindiër-Braaksma FJ, Feenstra WJ (1973) Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat Res 19:175–185CrossRefGoogle Scholar
  160. Ouyang J, Cai Z, Xia K, Wang Y, Duan J, Zhang M (2010) Identification and analysis of eight peptide transporter homologs in rice. Plant Sci 179:374–382CrossRefGoogle Scholar
  161. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  162. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 99:13324–13329PubMedPubMedCentralCrossRefGoogle Scholar
  163. Pérez-Tienda J, Corrêa A, Azcón-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH4 + transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiol Biochem 75:1–8PubMedCrossRefGoogle Scholar
  164. Peris-Peris C, Serra-Cardona A, Sanchez-Sanuy F, Campo S, Arino J, San Segundo B (2017) Two NRAMP6 isoforms function as iron and manganese transporters and contribute to disease resistance in rice. Mol Plant-Microbe Interact 30:385–398PubMedCrossRefGoogle Scholar
  165. Pinson SRM, Tarpley L, Yan W, Yeater K, Lahner B, Yakubova E, Huang XY, Zhang M, Guerinot ML, Salt DE (2014) Worldwide genetic diversity for mineral element concentrations in rice grain. Crop Sci 55:294–311CrossRefGoogle Scholar
  166. Poitout A, Crabos A, Petřík I, Novák O, Krouk G, Lacombe B, Ruffel S (2018) Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots. Plant Cell 30:1243–1257PubMedPubMedCentralCrossRefGoogle Scholar
  167. Poza-Carrión C, Paz-Ares J (2019) When nitrate and phosphate sensors meet. Nat Plants 5:339–340PubMedCrossRefGoogle Scholar
  168. Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296CrossRefGoogle Scholar
  169. Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134PubMedPubMedCentralCrossRefGoogle Scholar
  170. Ranathunge K, El-Kereamy A, Gidda S, Bi YM, Rothstein SJ (2014) AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and suboptimal NH4 + conditions. J Exp Bot 65:965–979PubMedPubMedCentralCrossRefGoogle Scholar
  171. Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363CrossRefGoogle Scholar
  172. Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98PubMedCrossRefGoogle Scholar
  173. Ruan W, Guo M, Wu P, Yi K (2016) Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice. Plant Mol Biol 93:327–340PubMedCrossRefGoogle Scholar
  174. Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133PubMedPubMedCentralCrossRefGoogle Scholar
  175. Rufty TW, MacKown CT, Israel DW (1990) Phosphorus stress effects on assimilation of nitrate. Plant Physiol 94:328–333PubMedPubMedCentralCrossRefGoogle Scholar
  176. Salt DE (2004) Update on plant ionomics. Plant Physiol 136:2451–2456PubMedPubMedCentralCrossRefGoogle Scholar
  177. Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733PubMedCrossRefGoogle Scholar
  178. Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015) A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84:374–384PubMedCrossRefGoogle Scholar
  179. Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H (2012) Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol 53:213–224PubMedCrossRefGoogle Scholar
  180. Senoura T, Sakashita E, Kobayashi T, Takahashi M, Aung MS, Masuda H, Nakanishi H, Nishizawa NK (2017) The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Mol Biol 95:375–387PubMedCrossRefGoogle Scholar
  181. Seo HM, Jung Y, Song S, Kim Y, Kwon T, Kim DH, Jeung SJ, Yi YB, Yi G, Nam MH, Nam J (2008) Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett 30:1833–1838PubMedCrossRefGoogle Scholar
  182. Sharma N, Sinha VB, Gupta N, Rajpal S, Kuchi S, Sitaramam V, Parsad R, Raghuram N (2018) Phenotyping for nitrogen use efficiency: rice genotypes differ in N-responsive germination, oxygen consumption, seed urease activities, root growth, crop duration, and yield at low N. Front Plant Sci 9:1452PubMedPubMedCentralCrossRefGoogle Scholar
  183. Shen C, Wang S, Zhang S, Xu Y, Qian Q, Qi Y, Jiang D (2013) OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant Cell Environ 36:607–620PubMedCrossRefGoogle Scholar
  184. Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H (2015) OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). Plant Sci 231:148–158PubMedCrossRefGoogle Scholar
  185. Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109:1361–1368PubMedCrossRefGoogle Scholar
  186. Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996PubMedCrossRefGoogle Scholar
  187. Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, del Pozo JC (2019) Role of cis-zeatin in root responses to phosphate starvation. New Phytol 224:242–257PubMedCrossRefGoogle Scholar
  188. Sisaphaithong T, Hanai S, Tomioka R, Kobae Y, Tanaka A, Yano K, Takenaka C, Hata S (2017) Varietal differences in the growth responses of rice to an arbuscular mycorrhizal fungus under natural upland conditions. Plant Signal Behav 12:e1274483PubMedCrossRefGoogle Scholar
  189. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sonoda Y, Ikeda A, Saiki S, Nv Wirén, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726–734PubMedCrossRefGoogle Scholar
  191. Stangoulis JCR, Huynh B-L, Welch RM, Choi E-Y, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294CrossRefGoogle Scholar
  192. Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wirén N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211PubMedCrossRefGoogle Scholar
  193. Sun P, Liu FX, Tan LB, Zhu ZF, Fu YC, Sun CQ, Cai HW (2012a) Quantitative trait loci (QTLs) for potassium chlorate resistance and low temperature tolerance in seedling stage in rice (Oryza sativa L.). Indian J Genet Pl Br 72:405–414Google Scholar
  194. Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G (2012b) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581PubMedPubMedCentralCrossRefGoogle Scholar
  195. Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656PubMedCrossRefGoogle Scholar
  196. Sun Y, Luo W, Jain A, Liu L, Ai H, Liu X, Feng B, Zhang L, Zhang Z, Xu G, Sun S (2018) OsPHR3 affects the traits governing nitrogen homeostasis in rice. BMC Plant Biol 18:241PubMedPubMedCentralCrossRefGoogle Scholar
  197. Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617PubMedPubMedCentralCrossRefGoogle Scholar
  198. Szczerba MW, Britto DT, Ali SA, Balkos KD, Kronzucker HJ (2008) NH4 +-stimulated and -inhibited components of K+ transport in rice (Oryza sativa L.). J Exp Bot 59:3415–3423PubMedPubMedCentralCrossRefGoogle Scholar
  199. Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651PubMedCrossRefGoogle Scholar
  200. Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327PubMedCrossRefGoogle Scholar
  201. Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850PubMedPubMedCentralCrossRefGoogle Scholar
  202. Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35:1948–1957PubMedCrossRefGoogle Scholar
  203. Tamura W, Hidaka Y, Tabuchi M, Kojima S, Hayakawa T, Sato T, Obara M, Kojima M, Sakakibara H, Yamaya T (2010) Reverse genetics approach to characterize a function of NADH-glutamate synthase1 in rice plants. Amino Acids 39:1003–1012PubMedCrossRefGoogle Scholar
  204. Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T (2011) Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci 2:57PubMedPubMedCentralCrossRefGoogle Scholar
  205. Tan L, Zhu Y, Fan T, Peng C, Wang J, Sun L, Chen C (2019) OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512:112–118PubMedCrossRefGoogle Scholar
  206. Tang J, Chu C (2017) MicroRNAs in crop improvement: fine-tuners for complex traits. Nat Plants 3:17077PubMedCrossRefGoogle Scholar
  207. Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063PubMedPubMedCentralCrossRefGoogle Scholar
  208. Tang Z, Chen Y, Chen F, Ji Y, Zhao F (2017) OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant Cell Physiol 58:904–913PubMedCrossRefGoogle Scholar
  209. Tang W, Ye J, Yao X, Zhao P, Xuan W, Tian Y, Zhang Y, Xu S, An H, Chen G, Yu J, Wu W, Ge Y, Liu X, Li J, Zhang H, Zhao Y, Yang B, Jiang X, Peng C, Zhou C, Terzaghi W, Wang C, Wan J (2019) Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 10:5279PubMedPubMedCentralCrossRefGoogle Scholar
  210. Teng S, Tian C, Chen M, Zeng D, Guo L, Zhu L, Han B, Qian Q (2006) QTLs and candidate genes for chlorate resistance in rice (Oryza sativa L.). Euphytica 152:141–148CrossRefGoogle Scholar
  211. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432PubMedCrossRefGoogle Scholar
  212. Trijatmiko KR, Dueñas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C, Balindong J, Oliva N, Sapasap MV, Borrero J, Rey J, Francisco P, Nelson A, Nakanishi H, Lombi E, Tako E, Glahn RP, Stangoulis J, Chadha-Mohanty P, Johnson AAT, Tohme J, Barry G, Slamet-Loedin IH (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6:19792PubMedPubMedCentralCrossRefGoogle Scholar
  213. Tsay Y, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713PubMedCrossRefGoogle Scholar
  214. Tsujimoto Y, Muranaka S, Saito K, Asai H (2014) Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crops Res 155:1–9CrossRefGoogle Scholar
  215. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  216. Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S, Whelan J, Shou H (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196:139–148PubMedCrossRefGoogle Scholar
  217. Wang L, Ying Y, Narsai R, Ye L, Zheng L, Tian J, Whelan J, Shou H (2013) Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ 36:224–236PubMedCrossRefGoogle Scholar
  218. Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang D, Qi Y (2014a) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol 201:91–103PubMedCrossRefGoogle Scholar
  219. Wang X, Wang Y, Pineros MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014b) Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ 37:1159–1170PubMedCrossRefGoogle Scholar
  220. Wang Z, Ruan W, Shi J, Zhang L, Xiang D, Yang C, Li C, Wu Z, Liu Y, Yu Y, Shou H, Mo X, Mao C, Wu P (2014c) Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proc Natl Acad Sci U S A 111:14953–14958PubMedPubMedCentralCrossRefGoogle Scholar
  221. Wang C, Yue W, Ying Y, Wang S, Secco D, Liu Y, Whelan J, Tyerman SD, Shou H (2015a) Rice SPX-Major Facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–2831PubMedPubMedCentralGoogle Scholar
  222. Wang W, Zhang L, Li H, Zhang Z, Hu B, Chu C (2015b) Recent progress in molecular dissection of nutrient uptake and transport in rice. Sci Sin Vitae 45:569–590CrossRefGoogle Scholar
  223. Wang Q, Nian J, Xie X, Yu H, Zhang J, Bai J, Dong G, Hu J, Bai B, Chen L, Xie Q, Feng J, Yang X, Peng J, Chen F, Qian Q, Li J, Zuo J (2018a) Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 9:735PubMedPubMedCentralCrossRefGoogle Scholar
  224. Wang W, Hu B, Yuan D, Liu Y, Che R, Hu Y, Ou S, Zhang Z, Wang H, Li H, Jiang Z, Zhang Z, Gao X, Qiu Y, Meng X, Liu Y, Bai Y, Liang Y, Wang Y, Zhang L, Li L, Sodmergen S, Jing H, Li J, Chu C (2018b) Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 30:638–651PubMedPubMedCentralCrossRefGoogle Scholar
  225. Wang Y, Cheng Y, Chen K, Tsay Y (2018c) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122PubMedCrossRefGoogle Scholar
  226. Wang W, Hu B, Li A, Chu C (2019) NRT1.1 in plants: functions beyond nitrate transporter. J Exp Bot. CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wei D, Cui K, Ye G, Pan J, Xiang J, Huang J, Nie L (2012) QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice. Plant Soil 359:281–295CrossRefGoogle Scholar
  228. Wei J, Zheng Y, Feng H, Qu H, Fan X, Yamaji N, Ma J, Xu G (2018) OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. J Exp Bot 69:1095–1107PubMedCrossRefGoogle Scholar
  229. Wilkinson JQ, Crawford NM (1991) Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell 3:461–471PubMedPubMedCentralGoogle Scholar
  230. Wissuwa M, Yano M, Ae N (1998) Mapping of QTLs for phosphorus-deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet 97:777–783CrossRefGoogle Scholar
  231. Wissuwa M, Wegner J, Ae N, Yano M (2002) Substitution mapping of Pup1: a major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet 105:890–897PubMedCrossRefGoogle Scholar
  232. Wissuwa M, Kretzschmar T, Rose TJ (2016) From promise to application: root traits for enhanced nutrient capture in rice breeding. J Exp Bot 67:3605–3615PubMedCrossRefGoogle Scholar
  233. Wu X, Yu Y, Baerson SR, Song Y, Liang G, Ding C, Niu J, Pan Z, Zeng R (2017) Interactions between nitrogen and silicon in rice and their effects on resistance toward the brown planthopper Nilaparvata lugens. Front Plant Sci 8:28PubMedPubMedCentralGoogle Scholar
  234. Xia X, Fan X, Wei J, Feng H, Qu H, Xie D, Miller AJ, Xu G (2015) Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. J Exp Bot 66:317–331PubMedCrossRefGoogle Scholar
  235. Xiang C, Ren J, Zhao X, Ding Z, Zhang J, Wang C, Zhang J, Joseph CA, Zhang Q, Pang Y, Gao Y, Shi Y (2015) Genetic dissection of low phosphorus tolerance related traits using selected introgression lines in rice. Rice Sci 22:264–274CrossRefGoogle Scholar
  236. Xu L, Zhao H, Wan R, Liu Y, Xu Z, Tian W, Ruan W, Wang F, Deng M, Wang J, Dolan L, Luan S, Xue S, Yi K (2019) Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants 5:84–94PubMedCrossRefGoogle Scholar
  237. Xuan YH, Priatama RA, Huang J, Je BI, Liu JM, Park SJ, Piao HL, Son DY, Lee JJ, Park SH, Jung KH, Kim TH, Han CD (2013) Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. New Phytol 197:791–804PubMedCrossRefGoogle Scholar
  238. Xuan YH, Duan FY, Je BI, Kim CM, Li TY, Liu JM, Park Soon Ju, Cho JH, Kim TH, von Wirén N, Han CD (2017) Related to ABI3/VP1-Like 1 (RAVL1) regulates brassinosteroid-mediated activation of AMT1;2 in rice (Oryza sativa). J Exp Bot 68:727–737PubMedGoogle Scholar
  239. Xuan YH, Kumar V, Zhu XF, Je BI, Kim CM, Huang J, Cho JH, Yi G, Han CD (2018) IDD10 is involved in the interaction between NH4 + and auxin signaling in rice roots. J Plant Biol 61:72–79CrossRefGoogle Scholar
  240. Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Ma J (2013) Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162:927–939PubMedPubMedCentralCrossRefGoogle Scholar
  241. Yamaji N, Takemoto Y, Miyaji T, Mitani-Ueno N, Yoshida KT, Ma JF (2017) Reducing phosphorus accumulation in rice grains with an impaired transporter in the node. Nature 541:92–95PubMedCrossRefGoogle Scholar
  242. Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925PubMedCrossRefGoogle Scholar
  243. Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372PubMedCrossRefGoogle Scholar
  244. Yan Y, Wang H, Hamera S, Chen X, Fang R (2014) miR444a has multiple functions in the rice nitrate-signaling pathway. Plant J 78:44–55PubMedCrossRefGoogle Scholar
  245. Yang J, Kloepper JW, Ryu C-M (2009a) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefGoogle Scholar
  246. Yang X, Huang J, Jiang Y, Zhang H (2009b) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36:281–287PubMedCrossRefGoogle Scholar
  247. Yang Z, Wu Y, Li Y, Ling H, Chu C (2009c) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229PubMedCrossRefGoogle Scholar
  248. Yang S, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24:4236–4251PubMedPubMedCentralCrossRefGoogle Scholar
  249. Yang M, Zhang Y, Zhang L, Hu J, Zhang X, Lu K, Dong H, Wang D, Zhao FJ, Huang CF, Lian X (2014a) OsNRAMP5 contributes to manganese translocation and distribution in rice shoots. J Exp Bot 65:4849–4861PubMedPubMedCentralCrossRefGoogle Scholar
  250. Yang WT, Baek D, Yun D-J, Hwang WH, Park DS, Nam MH, Chung ES, Chung YS, Yi YB, Kim DH (2014b) Overexpression of OsMYB4P, an R2R3-type MYB transcriptional activator, increases phosphate acquisition in rice. Plant Physiol Biochem 80:259–267PubMedCrossRefGoogle Scholar
  251. Yang S, Hao D, Cong Y, Jin M, Su Y (2015) The rice OsAMT1;1 is a proton-independent feedback regulated ammonium transporter. Plant Cell Rep 34:321–330PubMedCrossRefGoogle Scholar
  252. Yang X, Nian J, Xie Q, Feng J, Zhang F, Jing H, Zhang J, Dong G, Liang Y, Peng J, Wang G, Qian Q, Zuo J (2016) Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant 9:1520–1534PubMedCrossRefGoogle Scholar
  253. Yang X, Xia X, Zhang Z, Nong B, Zeng Y, Xiong F, Wu Y, Gao J, Deng G, Li D (2017) QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Front Plant Sci 8:10Google Scholar
  254. Yang M, Lu K, Zhao F, Xie W, Ramakrishna P, Wang G, Du Q, Liang L, Sun C, Zhao H, Zhang Z, Liu Z, Tian J, Huang X, Wang W, Dong H, Hu J, Ming L, Xing Y, Wang G, Xiao J, Salt DE, Lian X (2018a) Genome-wide association studies reveal the genetic basis of ionomic variation in rice. Plant Cell 30:2720–2740PubMedPubMedCentralCrossRefGoogle Scholar
  255. Yang WT, Baek D, Yun DJ, Lee KS, Hong SY, Bae KD, Chung YS, Kwon YS, Kim DH, Jung KH, Kim DH (2018b) Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter. PLoS ONE 13:e0194628PubMedPubMedCentralCrossRefGoogle Scholar
  256. Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M (2008) CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A 105:20540–20545PubMedPubMedCentralCrossRefGoogle Scholar
  257. Ye Y, Yuan J, Chang X, Yang M, Zhang L, Lu K, Lian X (2015) The phosphate transporter gene OsPht1;4 Is involved in phosphate homeostasis in rice. PLoS ONE 10:e0126186PubMedPubMedCentralCrossRefGoogle Scholar
  258. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  259. Yokosho K, Yamaji N, Ma J (2016) OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot 67:5485–5494PubMedPubMedCentralCrossRefGoogle Scholar
  260. Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Dong W, Liu J, Liu H, Yang W, Zeng L, Li Q, He Z, Oldroyd GED, Wang E (2014) A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 24:130–133PubMedCrossRefGoogle Scholar
  261. Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y (2015) MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS ONE 10:e0135196PubMedPubMedCentralCrossRefGoogle Scholar
  262. Zhang Z, Chu C (2019) Nitrogen-use divergence between indica and japonica rice: variation at nitrate assimilation. Mol Plant. CrossRefPubMedGoogle Scholar
  263. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409PubMedCrossRefGoogle Scholar
  264. Zhang L, Shi W, Wang X (2006) Difference in selenite absorption between high- and low-selenium rice cultivars and its mechanism. Plant Soil 282:183–193CrossRefGoogle Scholar
  265. Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497PubMedPubMedCentralCrossRefGoogle Scholar
  266. Zhang Y, Xu Y, Yi H, Gong J (2012) Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. Plant J 72:400–410PubMedCrossRefGoogle Scholar
  267. Zhang F, Wu X, Zhou H, Wang D, Jiang T, Sun Y, Cao Y, Pei W, Sun S, Xu G (2014a) Overexpression of rice phosphate transporter gene OsPT6 enhances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 384:259–270CrossRefGoogle Scholar
  268. Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014b) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191PubMedCrossRefGoogle Scholar
  269. Zhang M, Pinson SRM, Tarpley L, Huang X-Y, Lahner B, Yakubova E, Baxter I, Guerinot ML, Salt DE (2014c) Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain. Theor Appl Genet 127:137–165PubMedCrossRefGoogle Scholar
  270. Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S (2015a) Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J 82:556–569PubMedCrossRefGoogle Scholar
  271. Zhang Y, Tan L, Zhu Z, Yuan L, Xie D, Sun C (2015b) TOND1 confers tolerance to nitrogen deficiency in rice. Plant J 81:367–376PubMedPubMedCentralCrossRefGoogle Scholar
  272. Zhang C, Lu W, Yang Y, Shen Z, Ma J, Zheng L (2018a) OsYSL16 is required for preferential Cu distribution to floral organs in rice. Plant Cell Physiol 59:2039–2051PubMedCrossRefGoogle Scholar
  273. Zhang C, Shinwari KI, Luo L, Zheng L (2018b) OsYSL13 is involved in iron distribution in rice. Int J Mol Sci 19:3537PubMedCentralCrossRefPubMedGoogle Scholar
  274. Zhang J, Zhang N, Liu YX, Zhang X, Hu B, Qin Y, Xu H, Wang H, Guo X, Zhang P, Jin T, Chu C, Bai Y (2018c) Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61:613–621PubMedCrossRefGoogle Scholar
  275. Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y (2019a) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684PubMedCrossRefGoogle Scholar
  276. Zhang L, Hu B, Deng K, Gao X, Sun G, Zhang Z, Li P, Wang W, Li H, Zhang Z, Fu Z, Yang J, Gao S, Li L, Yu F, Li Y, Ling H, Chu C (2019b) NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol J 17:1058–1068PubMedPubMedCentralCrossRefGoogle Scholar
  277. Zhao X, Mitani N, Yamaji N, Shen R, Ma J (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877PubMedPubMedCentralCrossRefGoogle Scholar
  278. Zhao H, Frank T, Tan Y, Zhou C, Jabnoune M, Arpat AB, Cui H, Huang J, He Z, Poirier Y, Engel KH, Shu Q (2016) Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains. New Phytol 211:926–939PubMedCrossRefGoogle Scholar
  279. Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei X, Shou H (2010a) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS ONE 5:e10190PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zheng L, Ying Y, Wang L, Wang F, Whelan J, Shou H (2010b) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol 10:166PubMedPubMedCentralCrossRefGoogle Scholar
  281. Zheng L, Yamaji N, Yokosho K, Ma JF (2012) YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. Plant Cell 24:3767–3782PubMedPubMedCentralCrossRefGoogle Scholar
  282. Zhong Y, Wang Y, Guo J, Zhu X, Shi J, He Q, Liu Y, Wu Y, Zhang L, Lv Q, Mao C (2018) Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2. New Phytol 219:135–148PubMedCrossRefGoogle Scholar
  283. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686PubMedPubMedCentralCrossRefGoogle Scholar
  284. Zhou Y, Tao Y, Tang D, Wang J, Zhong J, Wang Y, Yuan Q, Yu X, Zhang Y, Wang Y, Liang G, Dong G (2017) Identification of QTL associated with nitrogen uptake and nitrogen use efficiency using high throughput genotyped CSSLs in rice (Oryza sativa L.). Front Plant Sci 8:1166PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Life SciencesGuangzhou UniversityGuangzhouChina
  2. 2.State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina

Personalised recommendations