Advertisement

Theoretical and Applied Genetics

, Volume 133, Issue 1, pp 217–226 | Cite as

Dissection and cytological mapping of chromosome arm 4VS by the development of wheat-Haynaldia villosa structural aberration library

  • Keli Dai
  • Renhui Zhao
  • Miaomiao Shi
  • Jin Xiao
  • Zhongyu Yu
  • Qi Jia
  • Zongkuan Wang
  • Chunxia Yuan
  • Haojie Sun
  • Aizhong Cao
  • Ruiqi Zhang
  • Peidu Chen
  • Yingbo Li
  • Haiyan Wang
  • Xiue WangEmail author
Original Article

Abstract

Key message

A cytological map of Haynaldia villosa chromosome arm 4VS was constructed to facilitate the identification and utilization of beneficial genes on 4VS.

Abstract

Induction of wheat-alien chromosomal structure aberrations not only provides new germplasm for wheat improvement, but also allows assignment of favorable genes to define physical regions. Especially, the translocation or introgression lines carrying alien chromosomal fragments with different sizes are useful for breeding and alien gene mapping. Chromosome arm 4VS of Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum (L.) P. Candargy) confers resistances to eyespot and wheat yellow mosaic virus (WYMV). In this research, we used both irradiation and the pairing homoeologous gene (Ph) mutant to induce chromosomal aberrations or translocations. By using the two approaches, a structural aberration library of chromosome arm 4VS was constructed. In this library, there are 57 homozygous structural aberrations, in which, 39 were induced by the Triticum aestivum cv. Chinese Spring (CS) ph1b mutant (CS ph1b) and 18 were induced by irradiation. The aberrations included four types, i.e., terminal translocation, interstitial translocation, deletion and complex structural aberration. The 4VS cytological map was constructed by amplification in the developed homozygous aberrations using 199 4VS-specific markers, which could be allocated into 39 bins on 4VS. These bins were further assigned to their corresponding physical regions of chromosome arm 4DS based on BLASTn search of the marker sequences against the reference sequence of Aegilops tauschii Cosson. The developed genetic stocks and cytological map provide genetic stocks for wheat breeding as well as alien gene tagging.

Notes

Acknowledgements

This research was supported by the grants from the National Key Research and Development Program (2016YFD0102001), the National Natural Science Foundation of China (Nos. 31571653, 31771782, 31201204 and 31501305), the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 31661143005), the “948” Project of Ministry of Agriculture (2015-Z41), the special fund of Jiangsu Province for the transformation of scientific and technological achievements (BA2017138), the Program of Introducing Talents of Discipline to Universities (B08025), the Creation of Major New Agricultural Varieties in Jiangsu Province (PZCZ201706), the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_050953) and the SAAS Program for Excellent Research Team.

Author contribution statement

WXE and WHY designed experimental plan. DKL, ZRH, SMM, JQ, SHJ, YCX and WHY performed experiments. DKL, WZK, YZY and XJ designed the IT markers. CPD contributed to give us some advices about irradiation the materials. CAZ, ZRQ and LYB managed the materials in the field. DKL, ZRH, WHY and WXE wrote the manuscript. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

122_2019_3452_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1705 kb)

References

  1. Ardalani S, Mirzaghaderi G, Badakhshan H (2016) A Robertsonian translocation from Thinopyrum bessarabicum into bread wheat confers high iron and zinc contents. Plant Breed 135:286–290.  https://doi.org/10.1111/pbr.12359 CrossRefGoogle Scholar
  2. Ashida T, Nasuda S, Sato K, Endo TR (2007) Dissection of barley chromosome 5H in common wheat. Genes Genet Syst 82:123–133.  https://doi.org/10.1266/ggs.82.123 CrossRefPubMedGoogle Scholar
  3. Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nat Protoc 2:2649–2654.  https://doi.org/10.1038/nprot.2007.330 CrossRefPubMedGoogle Scholar
  4. Bie TD, Cao YP, Chen PD (2007) Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-haynaldia villosa amphiploid. J Integr Plant Biol 49:1619–1626.  https://doi.org/10.1111/j.1774-7909.2007.00578.x CrossRefGoogle Scholar
  5. Bie T, Zhao R, Jiang Z, Gao D, Zhang B, He H (2015) Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Mol Breed 35:34.  https://doi.org/10.1007/s11032-015-0211-y CrossRefGoogle Scholar
  6. Braz GT et al (2018) Comparative oligo-FISH mapping: an efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 208:513–523.  https://doi.org/10.1534/genetics.117.300344 CrossRefPubMedGoogle Scholar
  7. Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph (I) genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101.  https://doi.org/10.1007/BF00222400 CrossRefPubMedGoogle Scholar
  8. Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128.  https://doi.org/10.1007/BF00223930 CrossRefPubMedGoogle Scholar
  9. Chen SW, Chen PD, Wang X (2008) Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Sci China 51:346–352.  https://doi.org/10.1007/s11427-008-0048-2 CrossRefGoogle Scholar
  10. Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484.  https://doi.org/10.1007/s11032-012-9804-x CrossRefGoogle Scholar
  11. Cui HF, Sun Y, Deng JY, Wang MQ, Xia GM (2015) Chromosome elimination and introgression following somatic hybridization between bread wheat and other grass species. Plant Cell Tissue Org 120:203–210.  https://doi.org/10.1007/s11240-014-0594-1 CrossRefGoogle Scholar
  12. Du P, Zhuang LF, Wang YZ et al (2017) Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome 60:93–103.  https://doi.org/10.1139/gen-2016-0095 CrossRefPubMedGoogle Scholar
  13. Duan Q, Wang YY, Qiu L, Ren TH, Li Z, Fu SL, Tang ZX (2017) Physical location of new PCR-based markers and powdery mildew resistance gene(s) on rye (Secale cereale L.) chromosome 4 using 4R dissection. Front Plant Sci 8:1716.  https://doi.org/10.3389/fpls.2017.0171 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ghazali S, Mirzaghaderi G, Majdi M (2015) Production of a novel Robertsonian translocation from Thinopyrum bessarabicum into bread wheat. Cytol Genet 49:378–381.  https://doi.org/10.3103/s0095452715060031 CrossRefGoogle Scholar
  15. Hao M, Liu M, Luo J et al (2018) Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci 9:1040.  https://doi.org/10.3389/fpls.2018.01040 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jiang B, Liu TG, Li HH et al (2018) Physical mapping of a novel locus conferring leaf rust resistance on the long arm of Agropyron cristatum chromosome 2P. Front Plant Sci 9:817.  https://doi.org/10.3389/fpls.2018.00817 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Joshi GP, Nasuda S, Endo TR (2011) Dissection and cytological mapping of barley chromosome 2H in the genetic background of common wheat. Genes Genet Syst 86:231–248.  https://doi.org/10.1266/ggs.86.231 CrossRefPubMedGoogle Scholar
  18. King IP, Purdie KA, Rezanoor HN, Koebner RMD, Miller TE, Reader SM, Nicholson P (1993) Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet 86:895–900.  https://doi.org/10.1007/bf00211038 CrossRefPubMedGoogle Scholar
  19. Koo DH, Liu W, Friebe B, Gill BS (2017) Homoeologous recombination in the presence of Ph1 gene in wheat. Chromosoma 126:531–540.  https://doi.org/10.1007/s00412-016-0622-5 CrossRefPubMedGoogle Scholar
  20. Li H, Chen X, Xin ZY, Ma YZ, Xu HJ, Chen XY, Jia X (2005) Development and identification of wheat-Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breed 124:203–205.  https://doi.org/10.1111/j.1439-0523.2004.01062.x CrossRefGoogle Scholar
  21. Li H, Gill BS, Wang X, Chen P (2011) A Tal-PhI wheat genetic stock facilitates efficient alien introgression. Genet Resour Crop Evol 58:667–678.  https://doi.org/10.1007/s10722-010-9609-x CrossRefGoogle Scholar
  22. Liu L, Luo Q, Li H, Li B, Li Z, Zheng Q (2018) Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131:2359–2370.  https://doi.org/10.1007/s00122-018-3158-7 CrossRefPubMedGoogle Scholar
  23. Luan Y, Wang XG, Liu WH et al (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510.  https://doi.org/10.1007/s00425-010-1187-9 CrossRefPubMedGoogle Scholar
  24. Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45.  https://doi.org/10.1139/g03-089 CrossRefPubMedGoogle Scholar
  25. Luo MC, Yang ZL, Kota RS, Dvorák J (2000) Recombination of chromosomes 3A(m) and 5A(m) of Triticum monococcum with homeologous chromosomes 3A and 5A of wheat: the distribution of recombination across chromosomes. Genetics 154:1301.  https://doi.org/10.1089/109065700316525 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Luo MC, Gu YQ, Puiu D et al (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498–502.  https://doi.org/10.1038/nature24486 CrossRefPubMedGoogle Scholar
  27. Mago R, Verlin D, Zhang P et al (2013) Development of wheat-Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet 126:2943–2955.  https://doi.org/10.1007/s00122-013-2184-8 CrossRefPubMedGoogle Scholar
  28. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494.  https://doi.org/10.1139/g93-067 CrossRefPubMedGoogle Scholar
  29. Mullan DJ, Mirzaghaderi G, Walker E, Colmer TD, Francki MG (2009) Development of wheat—Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor Appl Genet 119:1313–1323.  https://doi.org/10.1007/s00122-009-1136-9 CrossRefPubMedGoogle Scholar
  30. Murray TD, Pena RC, Yildirim A, Jones SS, Qualset CO (1994) A new source of resistance to pseudocercosporella herpotrichoides, pause of eyespot disease of wheat, located on chromosome 4V of Dasypyrum villosum. Plant Breed 113:281–286.  https://doi.org/10.1111/j.1439-0523.1994.tb00737.x CrossRefGoogle Scholar
  31. Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M, Yamauchi H, Murray TD (2010) Mapping a gene conferring resistance to Wheat yellow mosaic virus in European winter wheat cultivar ‘Ibis’ (Triticum aestivum L.). Euphytica 176:223–229.  https://doi.org/10.1007/s10681-010-0229-5 CrossRefGoogle Scholar
  32. Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021.  https://doi.org/10.1534/genetics.110.123588 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pu J et al (2015) Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet 128:1319–1328.  https://doi.org/10.1007/s00122-015-2508-y CrossRefPubMedGoogle Scholar
  34. Qi L, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19.  https://doi.org/10.1007/s10577-006-1108-8 CrossRefPubMedGoogle Scholar
  35. Qi LL, Pumphrey MO, Friebe B et al (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167.  https://doi.org/10.1007/s00122-011-1574-z CrossRefPubMedGoogle Scholar
  36. Rey MD, Calderon MC, Prieto P (2015) The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci 6:160.  https://doi.org/10.3389/fpls.2015.00160 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sakai K, Nasuda S, Sato K, Endo TR (2009) Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps. Genes Genet Syst 84:25–34.  https://doi.org/10.1266/ggs.84.25 CrossRefPubMedGoogle Scholar
  38. Sakata M, Nasuda S, Endo TR (2010) Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers. Genes Genet Syst 85:19–29.  https://doi.org/10.1266/ggs.85.19 CrossRefPubMedGoogle Scholar
  39. Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342–348.  https://doi.org/10.1007/BF00265294 CrossRefPubMedGoogle Scholar
  40. Shen Y, Shen J, Dawadondup et al (2013) Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Mol Breed 31:195–204.  https://doi.org/10.1007/s11032-012-9783-y CrossRefGoogle Scholar
  41. Sun H, Song JJ, Lei J et al (2018) Construction and application of oligo-based FISH karyotype of Haynaldia villosa. Genet Genomics 45:463–466.  https://doi.org/10.1016/j.jgg.2018.06.004 CrossRefGoogle Scholar
  42. Tiwari VK, Wang SC, Sehgal S et al (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15:273.  https://doi.org/10.1186/1471-2164-15-273 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang XW, Lai JR, Chen LH, Liu GT (1998) Molecular identification for Chinese Spring ph1b mutant. Sci Agric Sin 31:31–34Google Scholar
  44. Wang HY, Dai KL, Xiao J et al (2017) Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia villosa by chromosome sorting and next-generation sequencing. BMC Genomics 18:167.  https://doi.org/10.1186/s12864-017-3567-z CrossRefPubMedPubMedCentralGoogle Scholar
  45. Xiao Z, Tang S, Qiu L, Tang Z, Fu S (2017) Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat. Backgr Mol.  https://doi.org/10.3390/molecules22060973 CrossRefGoogle Scholar
  46. Xing L, Hu P, Liu J et al (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–878.  https://doi.org/10.1016/j.molp.2018.02.013 CrossRefPubMedGoogle Scholar
  47. Zhang P, Li W, Friebe B, Gill BS (2004) Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. Genome 47:979–987.  https://doi.org/10.1139/g04-042 CrossRefPubMedGoogle Scholar
  48. Zhang Q, Li Q, Wang XE et al (2005) Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320.  https://doi.org/10.1007/s10681-005-1743-8 CrossRefGoogle Scholar
  49. Zhang R, Cao Y, Wang X, Feng Y, Chen P (2010) Development and characterization of a Triticum aestivum-H. villosa T5VS·5DL translocation line with soft grain texture. J Cereal Sci 51:220–225.  https://doi.org/10.1016/j.jcs.2009.12.001 CrossRefGoogle Scholar
  50. Zhang R, Mingyi Z, Xiue W, Peidu C (2014) Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theor Appl Genet 127:523–533.  https://doi.org/10.1007/s00122-013-2244-0 CrossRefGoogle Scholar
  51. Zhang R, Hou F, Feng Y, Zhang W, Zhang M, Chen P (2015) Characterization of a Triticum aestivumDasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet 128:2415–2425.  https://doi.org/10.1007/s00122-015-2596-8 CrossRefPubMedGoogle Scholar
  52. Zhang RQ, Yao RN, Sun DF, Sun BX, Feng YG, Zhang W, Zhang MY (2017) Development of V chromosome alterations and physical mapping of molecular markers specific to Dasypyrum villosum. Mol Breed 37:67.  https://doi.org/10.1007/s11032-017-0671-3 CrossRefGoogle Scholar
  53. Zhang W, Zhu X, Zhang M, Chao S, Xu S, Cai X (2018) Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theor Appl Genet 131:2381–2395.  https://doi.org/10.1007/s00122-018-3160-0 CrossRefPubMedGoogle Scholar
  54. Zhao W, Qi L, Cao X et al (2010) Development and characterization of two new Triticum aestivumDasypyrum villosum Robertsonian translocation lines T1DS·1V#3L and T1DL·1V#3S and their effect on grain quality. Euphytica 175:343–350.  https://doi.org/10.1007/s10681-010-0177-0 CrossRefGoogle Scholar
  55. Zhao RH, Wang HY, Xiao J et al (2013) Induction of 4VS chromosome recombinants using the CSph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theor Appl Genet 126:2921–2930.  https://doi.org/10.1007/s00122-013-2181-y CrossRefPubMedGoogle Scholar
  56. Zhu X, Wang H, Guo J, Wu Z, Cao A, Bie T, Nie M, You FM, Cheng Z, Xiao J (2012) Mapping and validation of quantitative trait loci associated with wheat yellow mosaic bymovirus resistance in bread wheat. Theor Appl Genet 124:177–188.  https://doi.org/10.1007/s00122-011-1696-3 CrossRefPubMedGoogle Scholar
  57. Zhu MQ, Du P, Zhuang LF, Chu CG, Zhao H, Qi ZJ (2017) A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome 60:657–664.  https://doi.org/10.1139/gen-2016-0167 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Keli Dai
    • 1
  • Renhui Zhao
    • 1
  • Miaomiao Shi
    • 1
  • Jin Xiao
    • 1
  • Zhongyu Yu
    • 1
  • Qi Jia
    • 1
  • Zongkuan Wang
    • 1
  • Chunxia Yuan
    • 1
  • Haojie Sun
    • 1
  • Aizhong Cao
    • 1
  • Ruiqi Zhang
    • 1
  • Peidu Chen
    • 1
  • Yingbo Li
    • 1
  • Haiyan Wang
    • 1
  • Xiue Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics InstituteNanjing Agricultural University/JCIC-MCPNanjingChina

Personalised recommendations