Advertisement

Theoretical and Applied Genetics

, Volume 132, Issue 11, pp 3169–3176 | Cite as

Identification of a new source of stripe rust resistance Yr82 in wheat

  • Kandiah Pakeerathan
  • Harbans Bariana
  • Naeela Qureshi
  • Debbie Wong
  • Matthew Hayden
  • Urmil BansalEmail author
Original Article

Abstract

Key message

Stripe rust resistance gene, Yr82, was mapped in chromosome 3BL using SNP markers. Yr82 interacted with Yr29 to produce lower stripe rust responses at the adult plant stage.

Abstract

Landrace Aus27969 produced low infection types against Australian Puccinia striiformis f. sp. tritici (Pst) pathotypes. A recombinant inbred line (RIL) F7 population from the Aus27969/Avocet S cross was developed. Monogenic segregation for seedling stripe rust response was observed among the RIL population, and the resistance locus was named Yr82. Bulk segregant analysis performed using the iSelect wheat 90 K Infinium SNP array located Yr82 in the long arm of chromosome 3B. The RIL population was screened against stripe rust under field conditions and was genotyped with targeted genotyping-by-sequencing assay. QTL analysis detected the involvement of chromosomes 1B and 3B in controlling stripe rust resistance carried by Aus27969. Incorporation of Yr82 and marker SNPLr46G22 into the linkage map showed that the QTL in 1B and 3B represented Yr29 and Yr82, respectively. Kompetitive allele-specific PCR (KASP) markers sun KASP_300 and KASP_8775 flanked Yr82 distally and proximally, respectively, each at 2 cM distance. These Yr82-linked markers were polymorphic among 84% of Australian cultivars and can be used for marker-assisted selection of Yr82.

Keywords

Adult plant resistance All-stage resistance KASP Puccinia striiformis 

Notes

Acknowledgements

The first author thanks the Australian Government for an International Postgraduate Research Scholarship and Australian Postgraduate Award (IPRS and APA) to pursue Ph.D. studies at the University of Sydney and acknowledges the University of Jaffna for granting study leave. Financial support from the GRDC Australia is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

All authors read the manuscript, and there is no conflict of interest.

Supplementary material

122_2019_3416_MOESM1_ESM.docx (36 kb)
Supplementary file1 (DOCX 27 kb)

References

  1. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G, Sharpe AG, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A-A, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden MJ, Koh C, Muehlbauer G, Pasam RK, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer KFX, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, Twardziok S, Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Borril Pl, Ramirez-Gonzalez RH, Arnaud D, Chalabi S, Chalhoub B, Cory S, Datla R, Davey MW, Jacobs J, Robinson SJ, Steuernagel B, van Ex F, Wulff BBH, Benhamed M, Bendahmane A, Concia L, Latrasse D, Alaux M, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O-A, Singh K, Valárik M, van Vossen E, Vautrin S, Weining S, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones JDG, Witek K, Yu G, Small I, Melonek J, Zhou R, Belova T, Kanyuka K, King R, Nilsen K, Walkowiak S, Cuthbert R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Čížková J, Ani Akpinar B, Biyiklioglu S, Gao L, N'Daiye A, Kubaláková M, Šafář J, Alfama F, Adam-Blondon A-F, Flores R, Guerche C, Loaec M, Quesneville H, Condie J, Ens J, Maclachlan R, Tan Y, Alberti A, Aury J-M, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Kaur G, Luo M, Sehgal S, Chhuneja P, Gupta OP, Jindal S, Kaur P, Malik P, Sharma P (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661Google Scholar
  2. Bansal UK, Hayden MJ, Gill MB, Bariana HS (2009) Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171:121–127CrossRefGoogle Scholar
  3. Bansal U, Forrest K, Hayden M, Miah H, Singh D, Bariana H (2011) Characterisation of a new stripe rust resistance gene Yr47 and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122:1461–1466CrossRefPubMedGoogle Scholar
  4. Bansal UK, Arief VN, DeLacy IH, Bariana HS (2013) Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 194:219–233CrossRefGoogle Scholar
  5. Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33:51–59CrossRefGoogle Scholar
  6. Bariana HS, Bansal UK (2017) Breeding for disease resistance A2—Thomas, Brian. In: Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, 2nd edn. Academic Press, Oxford, pp 69–76CrossRefGoogle Scholar
  7. Bariana HS, Parry N, Barclay IR, Loughman R, McLean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148CrossRefPubMedGoogle Scholar
  8. Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker assisted selection technologies. Aust J Agric Res 58:576CrossRefGoogle Scholar
  9. Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007b) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments: Proceedings of the 7th International Wheat Conference, 27 November - 2 December 2005, Mar del Plata, Argentina. Springer Netherlands, Dordrecht, pp 723–728Google Scholar
  10. Bariana H, Forrest K, Qureshi N, Miah H, Hayden M, Bansal U (2016) Adult plant stripe rust resistance gene Yr71 maps close to Lr24 in chromosome 3D of common wheat. Mol Breed 36:98–108CrossRefGoogle Scholar
  11. Chen X (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 04:608–627CrossRefGoogle Scholar
  12. Chhetri M (2015) Molecular mapping and genetic characterization of rust resistance in wheat. University of Sydney, Australia, Plant breeding instituteGoogle Scholar
  13. Chhetri M, Bariana H, Kandiah P, Bansal U (2016) Yr58: A new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathol 106:1530–1534CrossRefGoogle Scholar
  14. Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127:1795–1803CrossRefPubMedGoogle Scholar
  15. Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30CrossRefPubMedGoogle Scholar
  16. Manly KF, Cudmore RH Jr, Meer JM (2001) MapManager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932CrossRefPubMedPubMedCentralGoogle Scholar
  17. McIntosh R, Dubcovsy J, Rogers W, Morris C, Appels R, Xia X (2015–2016) Catalogue of gene symbols for wheat: 2015–2016 https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf
  18. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, MelbourneCrossRefGoogle Scholar
  19. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat 2005(supplement):1–56Google Scholar
  20. McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Xia XC (2009) Catalogue of gene symbols for wheat 2009(supplement):1–28Google Scholar
  21. McIntosh R, Dubcovsky J, Rogers W, Morris C, Appels R, Xia X (2014) Catalogue of gene symbols for wheat: 2013–2014 https://maswheat.ucdavis.edu/CGSW/2013-2014_Supplement.pdf
  22. McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2017) Catalogue of gene symbols for wheat 2017(supplement):1–20Google Scholar
  23. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88:9828–9832CrossRefPubMedGoogle Scholar
  24. Mitrofanova OP (2012) Wheat genetic resources in Russia: Current status and prebreeding studies. Russ J Genet: Appl Res 2:277–285CrossRefGoogle Scholar
  25. Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong GH, Myles S (2015) Linkimpute: Fast and accurate genotype imputation for non-model organism organisms. G3 5:2383–2390Google Scholar
  26. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498CrossRefPubMedGoogle Scholar
  27. Nsabiyera V, Bariana HS, Qureshi N, Wong D, Forrest KL, Hayden MJ, Bansal UK (2018) Characterization and molecular mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet.  https://doi.org/10.1007/s00122-018-3090-x CrossRefPubMedGoogle Scholar
  28. O’Brien L, Brown JS, Young RM, Pascoe I (1980) Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Australasian Plant Pathol 9:14–14CrossRefGoogle Scholar
  29. Pasam RK, Bansal U, Daetwyler HD, Forrest KL, Wong D, Petkowski J, Willey N, Randhawa M, Chhetri M, Miah H, Tibbits J, Bariana H, Hayden MJ (2017) Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Theor Appl Genet 130:777–793CrossRefPubMedGoogle Scholar
  30. Qureshi N, Bariana H, Forrest K, Hayden M, Keller B, Wicker T, Faris J, Salina E, Bansal U (2017) Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet 130:495–504CrossRefPubMedGoogle Scholar
  31. Randhawa M, Bansal U, Valarik M, Klocova B, Dolezel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324CrossRefPubMedGoogle Scholar
  32. Randhawa M, Bariana H, Mago R, Bansal U (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:1–8CrossRefGoogle Scholar
  33. Rosewarne G, Herrera-Foessel S, Singh R, Huerta-Espino J, Lan C, He Z (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449CrossRefPubMedPubMedCentralGoogle Scholar
  34. Singh RP, Huerta-Espino J, William HM (2001) Slow rusting gene resitance to leaf and yellow rusts in wheat: genetics and breeding at CIMMYT. In: Eastwood R, Hollamby G, Rathjen T, Gororo N (eds) Assembly Proc Wheat Breed Soc Australia Inc. Wheat Breeding Society of Australia Inc, Mildura, pp 103–108Google Scholar
  35. Taylor J, Butler D (2017) R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. J Stat Softw 79:1–29CrossRefGoogle Scholar
  36. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang S, Basten CJ, Zeng ZB (2012). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. https://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  38. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 58:567–575CrossRefGoogle Scholar
  40. Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141CrossRefGoogle Scholar
  41. Wellings CR, McIntosh RA (1990) Puccinia striiformis f.sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol 39:316–325CrossRefGoogle Scholar
  42. Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: Evidence for a foreign incursion. Australas Plant Pathol 32:321–322CrossRefGoogle Scholar
  43. Wright S (1968) Evolution and genetics of populations. Genetics and biometric foundations, vol 1. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life and Environmental Sciences, Faculty of ScienceThe University of Sydney Plant Breeding InstituteCobbittyAustralia
  2. 2.Department of Agricultural BiologyThe University of JaffnaKilinochchiSri Lanka
  3. 3.Centre for AgriBioscienceAgriculture Victoria, AgriBioBundooraAustralia
  4. 4.School of Applied Systems BiologyLa Trobe UniversityBundooraAustralia

Personalised recommendations